scholarly journals Prediction of forage digestibility from some laboratory procedures.

1969 ◽  
Vol 17 (2) ◽  
pp. 119-127
Author(s):  
B. Duinum ◽  
P.J. Van Soest

Digestibility of 106 samples of hay, grass, grass silage and legume forage was estimated by regression from cell contents and cell wall constituents estimated chemically. Cell wall constituents were cellulose, hemicelluloses, lignin, cutin, plant silica and soil contamination. Values were not as closely related to digestibility in vivo by sheep as were values obtained by digestion with rumen fluid in vitro. Correlation between digestibility of cell wall constituents and lignin content was poor, and this and other reasons for the poor results from chemical analysis are discussed.-T. D. B. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1971 ◽  
Vol 19 (2) ◽  
pp. 106-113
Author(s):  
B. Deinum

For part 1 see Abst. 1564, Vol. 40. 2. The relation between digestibilities of organic matter in vivo and in vitro did not differ significantly between the institutes at Hoorn and Wageningen. No difference was found in digestibility of the cell wall constituents in relation to the lignin content, nor was there a significant difference in the relation between the percentage of digestible cell contents and the percentage of cell contents in forage from well managed pastures. Twelve forages of highly digestible perennial ryegrass deviated from these farm forages at Wageningen, showing smaller excretion of bacterial and endogenous residue. Comparison of the 2 lignin procedures showed that 72% sulfuric acid lignin gave consistent residual standard deviations of digestibility of cell wall constituents; permanganate lignin gave smaller errors in forages at Wageningen but greater errors in forages at Hoorn. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng He ◽  
Katja Machemer-Noonan ◽  
Philippe Golfier ◽  
Faride Unda ◽  
Johanna Dechert ◽  
...  

Abstract Background Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. Results Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4–2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. Conclusions In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.


1990 ◽  
Vol 38 (3B) ◽  
pp. 407-422
Author(s):  
A. Steg ◽  
S.F. Spoelstra ◽  
J.M. van der Meer ◽  
V.A. Hindle

A total of 50 grass silages were tested in digestibility trials using Texel wethers. The feed silages were wilted of varying DM contents and treated with cell-wall degrading enzymes. The accuracy of feed evaluation was studied using laboratory analyses, including cell-wall analyses, incubation in vitro with rumen fluid and the enzymic procedure. A comparison was made between these results and the current and recently suggested procedures for prediction of digestibility of grass silage. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
D I Givens ◽  
Jeannie M Everington ◽  
C K Baker

There have been many attempts to use the measurement of cell wall fractions to predict the digestibility in vivo of untreated and alkali treated straws (see far example Sundstøl et al, 1978; Reid and Ørskov, 1987). All these attempts have shown this approach to have very low predictive ability for straws. Accordingly extensive use has been made of digestibility measurements in vitro using either rumen fluid (eg Sundstøl et al, 1978) or cellulase type enzymes (eg Jewell et al, 1986).Whilst in vitro methods appear to be useful predictors of digestibility in straws, they are slow and relatively expensive. The work reported here has compared their predictive power with that of near infra-red reflectance spectroscopy (NIR).A total of 123 cereal straws were used. These included 54 wheat, 43 barley and 4 oat straws all untreated and the 9 wheat, 9 barley and 4 oat straws oven-treated with ammonia previously described by Mason et al (1988).


2021 ◽  
Vol 51 (3) ◽  
pp. 399-406
Author(s):  
K. Selzer ◽  
A. Hassen ◽  
A.M. Akanmu ◽  
A.Z.M. Salem

Forages play an important role in ruminant animal production worldwide. Unlocking the nutritional potential of poor-quality tropical forages with fibrolytic enzymes would improve forage digestibility and utilization. Using in vitro and in vivo methods this study investigated the effect of pre-treating Smutsfinger hay for 24 hours with a mixture of fibrolytic enzyme (100% cellulase; 75% cellulase: 25% xylanase; 50% cellulase: 50% xylanase; 25% cellulase: 75% xylanase; 100% xylanase and a control with no enzyme) on ruminal fermentation and digestibility of nutrients by sheep. For in vitro fermentation, dry matter, neutral detergent fibre (NDF) degradability and volatile fatty acids (VFA) were determined with standard procedures. The same treatments were used for an in vivo digestibility trial using Merino sheep in a 6 x 6 Latin square design. Feed intake and total tract digestibility were recorded. Rumen fluid samples were collected daily, preserved, and analysed for VFA. The addition of 100% cellulase enzyme to Smutsfinger hay in vitro increased (P <0.05) NDF degradability and gas production compared with the control and inclusion of 100% xylanase enzyme. Both 100% cellulase and xylanase enzymes significantly reduced in vitro end time fermentation pH. A 50:50 mixture of cellulase and xylanase plus enzyme in vivo, increased acetate, total VFA concentration, and higher NDF and ADF digestibility of the test feed compared with the control. Inclusion of a 50-75% mixture of cellulase and 50-25% xylanase enzymes treatment led to higher gas production and butyrate concentration, decreased ruminal pH and improved nutrient digestibility.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


2021 ◽  
Author(s):  
Rodrigo L Fabri ◽  
Jhamine C O Freitas ◽  
Ari S O Lemos ◽  
Lara M Campos ◽  
Irley O M Diniz ◽  
...  

Abstract Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remains to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. Lay Abstract This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.


1996 ◽  
Vol 1996 ◽  
pp. 211-211
Author(s):  
Peter Young ◽  
F. P. O'Mara ◽  
M. Rath ◽  
P. J. Caffrey

Rumen fluid and cellulase based techniques are widely used to predict the digestibility of compound feeds and their ingredients. Recently gammanase enzymes have been added to some cellulase based techniques (Dowman, 1993; De Boever et al., 1994). Few comparisons of these techniques have involved by-product concentrate ingredients. The objective of this experiment was to compare the ability of three techniques, in vitro rumen fluid (RF), pepsin cellulase gammanase (PCG), and neutral detergent cellulase gammanase (NCDG), to predict the in vivo organic matter digestibility (OMD) of concentrate ingredients.


Sign in / Sign up

Export Citation Format

Share Document