scholarly journals The developmental pattern of roots and shoots of oats under favourable conditions.

1970 ◽  
Vol 18 (3) ◽  
pp. 168-181
Author(s):  
J.J. Schuurman ◽  
J.J.H. De Boer

Oats were sown on 24 Mar. in asbestos tubes 75 cm long and 15 cm in diameter filled with humus sand and placed in the open. The water level in the soil profile was maintained at about 70 cm below the soil surface by natural rainfall and by a controlled water supply from shallow dishes in which the tubes stood. Plants were sampled in duplicate at weekly intervals between 13 May and 15 July and the developmental growth pattern of shoots and seminal and nodal roots was examined. The total weight of nodal roots increased until the plant had attained its maximum shoot length, and until about 5 weeks after the last leaf appeared on 26 May. Weights and DM content of the shoots increased over the whole of the experimental period. The greatest number of nodal roots was initiated during 3-10 June, between the end of tillering and the beginning of panicle emergence; after that the numbers initiated per week decreased gradually. The number of seminal roots varied between 4 and 5 per plant and reached their maximum weight just after the end of tillering and before the panicles became visible. After 10 June the weight and growth rate of seminal roots decreased rapidly. Seminal roots and the early initiated nodal roots were the most important part of the root system. In the week before the panicles became visible, root and shoot growth was interrupted; this was thought to be related to the transition from the vegetative to the generative stage. CMC. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1982 ◽  
Vol 33 (4) ◽  
pp. 665 ◽  
Author(s):  
PS Cornish

The effects of surface-sowing on root type, number and xylem radius were studied in relation to the seedling growth and survival of ryegrass and phalaris. Under optimal conditions in a growth cabinet, both species produced primary and lateral seminal roots, nodal roots and, in the absence of light, a subcoleoptile internode (s.c.i.). Phalaris had fewer lateral seminal roots and, in this species, internodal roots occurred along the s.c.i. Surface placement per se had no effect on any of the measured parameters of root development, but surface drying prevented nodal root primordia from extending, even when plants were otherwise supplied with water. This effect of surface drying on nodal root development was confirmed in a glasshouse study using undisturbed soil cores (30 by 60 cm) to simulate field conditions. Phalaris was less likely than ryegrass to produce nodal roots after surface sowing. The effective xylem radius (re) of the primary seminal root was 7.9 �m in ryegrass and 11.6 �m in phalaris. Calculations using the Poiseuille equation indicated that the axial resistance to water flow through these roots would greatly restrict seedling water uptake and growth in the absence of other roots. Lateral seminal roots and internodal roots had small vessels which could not significantly reduce the axial resistance to flow. Good seedling water relations in both species therefore depend on early development of the nodal roots which contain large xylem vessels (re > 16 �m). It was concluded that the effect of soil-surface drying on nodal root development was likely to account for some cases of poor vigour and survival of surface-sown grasses.


1980 ◽  
Vol 28 (1) ◽  
pp. 20-28
Author(s):  
J.J. Schuurman

The influence of the duration of a high water-table on root and shoot growth of oats in an early growth stage was studied. Root wt., depth of rooting and number of nodal roots with a length of < 10 cm reacted favourably on a low water-table. In this experiment shoot growth, however, hardly reacted to better root growth. This meant that the plants with restricted root growth could absorb water and nutrients as well as those with larger root systems. The fertilization of the top 0-25 cm of soil could have been an important factor in this report. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2016 ◽  
Vol 5 (12) ◽  
pp. 5179
Author(s):  
Ilahi Shaik* ◽  
P. Janakiram ◽  
Sujatha L. ◽  
Sushma Chandra

Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from Gracilaria corticata and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml 89.40 µg/ml 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.


Geoderma ◽  
2016 ◽  
Vol 265 ◽  
pp. 1-5 ◽  
Author(s):  
J. Lipiec ◽  
A. Siczek ◽  
A. Sochan ◽  
A. Bieganowski

2018 ◽  
Vol 222 ◽  
pp. 86-93 ◽  
Author(s):  
Kare P. Mahmud ◽  
Bruno P. Holzapfel ◽  
Yann Guisard ◽  
Jason P. Smith ◽  
Sharon Nielsen ◽  
...  

2016 ◽  
Vol 46 (3) ◽  
pp. 506-512 ◽  
Author(s):  
Athos Odin Severo Dorneles ◽  
Aline Soares Pereira ◽  
Liana Verônica Rossato ◽  
Gessieli Possebom ◽  
Victória Martini Sasso ◽  
...  

ABSTRACT: Aluminum (Al) is highly toxic to plants, causing stress and inhibiting growth and silicon (Si) is considered beneficial for plants. This chemical element has a high affinity with Al. The aim of this study was to investigate the potential of Si to mitigate the toxic effects of Al on potato ( Solanum tuberosum L.) plants and assess whether this behavior is different among genotypes with differing degrees of sensitivity to Al. Potato plants of the genotypes SMIJ319-7 (Al-sensitive) and SMIF212-3 (Al-tolerant) were grown for fourteen days in nutrient solution (without P and pH 4.5±0.1) under exposure to combinations of Al (0 and 1.85mM) and Si (0, 0.5 and 1.0mM). After this period, shoot and roots of the two genotypes were collected to determine Al content in tissues and assess morphological parameters of root and shoot growth. Roots of both genotypes accumulated more Al than shoots and the Al-tolerant genotype accumulated more Al than the sensitive one, both in roots and in shoot. Furthermore, the presence of 0.5 and 1.0mM Si together with Al reduced the Al content in shoot in both genotypes and in roots of the Al-tolerant genotype, respectively. Si ameliorated the toxic effects of Al with regard to number of root branches and leaf number in both potato genotypes. Si has the potential to mitigate the toxic effects of Al in potato plants regardless of Al sensitivity.


Hereditas ◽  
2010 ◽  
Vol 147 (3) ◽  
pp. 114-122 ◽  
Author(s):  
H. Bchini ◽  
M. Ben Naceur ◽  
R. Sayar ◽  
H. Khemira ◽  
L. Ben Kaab-Bettaeïb

1981 ◽  
Vol 97 (1) ◽  
pp. 119-124 ◽  
Author(s):  
I. P. S. Ahlawat ◽  
C. S. Saraf

SUMMARYField studies were made for 2 years on a sandy loam soil under dryland conditions of north-west India with three pigeon-pea varieties in relation to plant density and the application of phosphate fertilizer. Varieties Pusa Ageti and P4785 with better developed root system and profuse nodulation had higher grain and stalk yield, and higher N and P yield than Prabhat. Root and shoot growth and root nodulation were adversely affected with increasing plant densities in the range 50 × 103 and 150 × 103 plants/ha. Stalk and total N and P yield increased with increasing plant density. Plant density of 117 × 103 plants/ha produced maximum grain yield of 1·53 t/ha. Phosphorus fertilizer promoted root and shoot growth, intensity and volume of nodulation and increased grain, stalk, N and P yield. The effect of plant density on grain yield was more pronounced in the presence of phosphate fertilizer. The economic optimum rate of P ranged between 22·1 and 23·1 kg/ha under different plant densities.


2011 ◽  
Vol 29 (4) ◽  
pp. 220-222
Author(s):  
Kathryne J. Jernigan ◽  
Amy N. Wright

Abstract Research was conducted to screen four landscape shrub taxa for tolerance to repeated flooding events. Plants of Fothergilla × intermedia ‘Mt. Airy’ (dwarf witchalder), Ilex verticillata ‘Winter Red’ (winterberry), Clethra alnifolia ‘Ruby Spice’ (summersweet), and Viburnum nudum Brandywine™ (possumhaw) were flooded repeatedly over six weeks for 0 (non-flooded), 3, or 6 days with a draining period of 6 days between each flooding event. The experiment was repeated for a total of two runs. With the exception of F. × intermedia ‘Mt. Airy’, all taxa showed good visual quality and no reduction in root growth in either run, and effects on shoot growth were minimal. Size index of Clethra alnifolia ‘Ruby Spice’ was 27% higher in plants flooded for 0 or 3 days than in plants flooded for 6 days in run 1 only. Shoot dry weight of Ilex verticillata ‘Winter Red’ was actually 11% higher in plants flooded 6 days days than in plants flooded for 0 or 3 days in run 2. Size index of Viburnum nudum Brandywine™ increased with increasing flood length, and plants flooded for 6 days had a 9% higher SI than plants flooded for 0 days in run 1. With the exception of Fothergilla × intermedia L. ‘Mt. Airy’, all taxa appeared tolerant of and even thrived during flooding and would be appropriate shrub selections for a southeastern United States rain garden.


Sign in / Sign up

Export Citation Format

Share Document