scholarly journals Temperature Distribution Analysis along the Length of Floating Head Multi Stream Heat Exchanger

Author(s):  
Mateen Ahmad ◽  
◽  
Waseem Saeed ◽  
Khaqan Javed ◽  
◽  
...  

Heat transfer between two streams is common and simple and well established and perfectly commercialized. Normally, the exchanger that is used for this purpose is shell and tube heat exchanger but in some industrial production unit where more than one reactant is to be preheated or pre-cooled for chemical reaction and same as post heating and post cooling required of multiple streams at same or different temperatures, Problem that is associated with such type shell and tube heat exchanger is that it can’t handle the multiple stream and for handling multiple streams we required more number of exchangers due to which capital cost increases and required more care of handling because the number of units increases. To overcome this problem, we need more than one heat sinks with one or more than one heat source that will minimize the covered volume per unit heat transfer area, the number of unit operation, operation time, man power and the capital cost with increasing thermal efficiency and heat utilization so to overcome this problem we need to move towards multi stream heat exchanger for handling multiple streams at once for heat exchange. Multi stream heat exchanger is opening of a new class of heat transfer equipment which deals more than two different streams for heat exchange. Such a way number of units can be reduced, which minimize time and space. With a little bit increase in complexity the operational cost will decrease and improve the thermal efficiency of heat transfer equipment, which minimize thermal losses and maximize the heat utilization which directly decrease the equipment size and capital cost. In the previous study we have discuss our research on the fabrication and Comparative Study of Floating Head (Triple pipe) Multi Stream Heat Exchanger with Shell & Tube This work is about the investigation involves the tentative examination of the heat exchange through the Floating Head Multi-Stream Heat Exchanger to evaluate the temperature distribution along the length, in which cool liquids are flowing through the inner and external pipe and hot liquid is moving through the central pipe of the exchanger.

2012 ◽  
Vol 516-517 ◽  
pp. 419-424
Author(s):  
Guo Rong Zhu ◽  
Xiao Hua Wang ◽  
Hong Biao Huang ◽  
Hu Chen

In this article, sensitivity analysis was performed using bidirectional single method with shell-and-tube heat exchanger as the basis and the entropy production in the working process of heat exchanger as target, to explore the optimizing direction for heat exchangers with the objective to reduce entropy production. First, the differential element analysis method was used in a case study of the entropy production of the heat transfer process - including the three heat transfer processes of convective heat exchange inside and outside the pipes and heat conduction across the pipe wall and the flow process - the fluid flowing process inside and outside the pipes, and the typical process parameter - dimensionless inlet heat exchange temperature difference, operation parameter - fluid flow rate inside the pipe and structural parameters - the heat transfer pipe inner diameter and length were used as characteristic parameters, to obtain the sensitivity coefficients under the conditions of the example, being respectively 0.95, 0.3, 0.3 and 0.38. The study in this article can provide some support to the energy efficiency evaluation of heat exchangers.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


2017 ◽  
Vol 6 (4) ◽  
pp. 83 ◽  
Author(s):  
Gaurav Thakur ◽  
Gurpreet Singh

The thermal performance of shell and tube heat exchangers has been enhanced with the use of different techniques. Air bubble injection is one such promising and inexpensive technique that enhances the heat transfer characteristics inside shell and tube heat exchanger by creating turbulence in the flowing fluid. In this paper, experimental study on heat transfer characteristics of shell and tube heat exchanger was done with the injection of air bubbles at the tube inlet and throughout the tube with water based Al2O3 nanofluids i.e. (0.1%v/v and 0.2%v/v). The outcomes obtained for both the concentrations at two distinct injection points were compared with the case when air bubbles were not injected. The outcomes revealed that the heat transfer characteristics enhanced with nanoparticles volumetric concentration and the air bubble injection. The case where air bubbles were injected throughout the tube gave maximum enhancement followed by the cases of injection of air bubbles at the tube inlet and no air bubble injection. Besides this, water based Al2O3 nanofluid with 0.2%v/v of Al2O3 nanoparticles gave more enhancement than Al2O3nanofluid with 0.1%v/v of Al2O3 nanoparticles as the enhancement in the heat transfer characteristics is directly proportional to the volumetric concentration of nanoparticles in the base fluid. The heat transfer rate showed an enhancement of about 25-40% and dimensionless exergy loss showed an enhancement of about 33-43% when air bubbles were injected throughout the tube. Moreover, increment in the heat transfer characteristics was also found due to increase in the temperature of the hot fluid keeping the flow rate of both the heat transfer fluids constant.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


2021 ◽  
Vol 6 (1) ◽  
pp. 69-75
Author(s):  
Taiwo O. Oni ◽  
Ayotunde A. Ojo ◽  
Daniel C. Uguru-Okorie ◽  
David O. Akindele

A shell-and-tube heat exchanger which was subjected to different flow configurations, viz. counter flow, and parallel flow, was investigated. Each of the flow configurations was operated under two different conditions of the shell, that is, an uninsulated shell and a shell insulated with fiber glass. The hot water inlet temperature of the tube was reduced gradually from 60 oC to 40 oC, and performance evaluation of the heat exchanger was carried out. It was found that for the uninsulated shell, the heat transfer effectiveness for hot water inlet temperature of 60, 55, 50, 45, and 40 oC are 0.243, 0.244, 0.240, 0.240, and 0.247, respectively, for the parallel flow arrangement. For the counter flow arrangement, the heat transfer effectiveness for the uninsulated shell are 2.40, 2.74, 5.00, 4.17, and 2.70%, respectively, higher than those for the parallel flow. The heat exchanger’s heat transfer effectiveness with fiber-glass-insulated shell for the parallel flow condition with tube hot water inlet temperatures of 60, 55, 50, 45, and 40 oC are 0.223, 0.226, 0.220, 0.225, and 0.227, respectively, whereas the counter flow condition has its heat transfer effectiveness increased by 1.28, 1.47, 1.82, 1.11, and 1.18%, respectively, over those of the parallel flow.


2014 ◽  
Vol 591 ◽  
pp. 3-6
Author(s):  
M. Raja ◽  
R. Vijayan ◽  
R. Vivekananthan ◽  
M.A. Vadivelu

In the present work, the effect of nanofluid in a shell and tube heat exchanger was studied numerically. The effects of Reynolds number, volume concentration of suspended nanoparticles on the heat transfer characteristics were investigated using CFD software. Finally, the effect of the nanofluid on Shell and tube heat exchanger performance was studied and compared to that of a conventional fluid (i.e., water).


Sign in / Sign up

Export Citation Format

Share Document