Development and Public Release of Solar Radiation Map for Effective Use of Solar Energy Based on GIS with Digital Surface Model

Author(s):  
Atsushi Shiota ◽  
◽  
Yuuki Koyamatsu ◽  
Kiyotaka Fuji ◽  
Yasunori Mitani ◽  
...  
2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3172 ◽  
Author(s):  
Xiaoyang Song ◽  
Yaohuan Huang ◽  
Chuanpeng Zhao ◽  
Yuxin Liu ◽  
Yanguo Lu ◽  
...  

Solar energy is the most clean renewable energy source and has good prospects for future sustainable development. Installation of solar photovoltaic (PV) systems on building rooftops has been the most widely applied method for using solar energy resources. In this study, we developed an approach to simulate the monthly and annual solar radiation on rooftops at an hourly time step to estimate the solar PV potential, based on rooftop feature retrieval from remote sensing images. The rooftop features included 2D rooftop outlines and 3D rooftop parameters retrieved from high-resolution remote sensing image data (obtained from Google Maps) and digital surface model (DSM, generated from the Pleiades satellite), respectively. We developed the building features calculation method for five rooftop types: flat rooftops, shed rooftops, hipped rooftops, gable rooftops and mansard rooftops. The parameters of the PV modules derived from the building features were then combined with solar radiation data to evaluate solar photovoltaic potential. The proposed method was applied in the Chao Yang District of Beijing, China. The results were that the number of rooftops available for PV systems was 743, the available rooftop area was 678,805 m2, and the annual PV electricity potential was 63.78 GWh/year in the study area, which has great solar PV potential. The method to perform precise calculation of specific rooftop solar PV potential developed in this study will guide the formulation of energy policy for solar PV in the future.


Author(s):  
Olga Krivenko ◽  
Peter Kulikov ◽  
Andrey Zaprivoda ◽  
Vitaliy Zaprivoda

The aim of research is to simulate the zones of solar radiation on the curved surfaces of the shells of high-rise buildings for the effective use of renewable solar energy. An urgent task is the development of tools that can substantiate the decision-making by designers about the location of solar thermal devices in the energy-efficient design of curvilinear high-rise buildings. The main attention is paid to high-rise buildings, is actively growing in modern megalopolises and requires a significant energy resource. To optimize the integration of solar thermal devices in high-rise buildings, it is important to take into account a set of design parameters, including parameters of surface shape and location in space. A feature of curved surfaces, considered in the study, is their aerodynamic properties, which provide them with the advantage of choosing among modern high-rise buildings. At the same time, the complexity of setting the parameters of a curved surface to determine the zones of solar radiation for the effective use of regenerative solar energy lies in providing reliable and convenient tools for optimizing decision-making. The study proposes an application of the method based on a discrete geometric model of solar radiation input on the surface of the shells of high-rise buildings, described by compartments of curved geometric surfaces. As a result of modeling, let’s obtain a family of lines of the same level of solar radiation on a certain curved surface for the given parameters of time and geographic location. As an example of simulation modeling, the performed calculations of the instantaneous model of the distribution of solar radiation on the compartments of the curved surfaces of an ellipsoid of revolution, hemisphere, hyperbolic paraboloid. On the basis of the proposed model for the distribution of solar radiation over curvilinear surfaces of buildings, the influence of factors arising in the design process is investigated: changes in the geometric parameters of the surface shape, orientation to the cardinal points, the formation of zones of its own shadow on surfaces. Calculations were performed and instantaneous solar radiation zones were constructed on the surfaces of a hemisphere, a hyperbolic paraboloid with various geometric parameters, taking into account different orientations relative to the cardinal points, and determining the zones of its own shadow. At this stage of the study, the result is an algorithm for constructing zones of different levels of solar radiation on curved surfaces of high-rise buildings. The advantage of the algorithm is the ability to analyze the results of changes in the design parameters of the surface of a high-rise building when placing solar systems on them. The proposed approach will provide a basis for automating the modeling process, will help expand the scope of solar systems in high-rise construction and increase the efficiency of their work


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 663-673 ◽  
Author(s):  
Dragutin Protic ◽  
Milan Kilibarda ◽  
Marina Nenkovic-Riznic ◽  
Ivan Nestorov

Solar maps as web cartographic products that provide information on solar potential of surfaces on the Earth have been exploited in decision making, awareness raising, and promoting the use of solar energy. Web based solar maps of cities have become popular services as the use of solar energy is especially attractive in urban environments. The article discusses the concept and aspects of urban solar potential maps on the example of the i-Scope project as a case study. The i-Scope roof solar potential service built on 3-D urban information models was piloted in eight European cities. To obtain precise data on solar irradiation, a good quality digital surface model is required. A cost efficient innovative method for generation of digital surface model from stereophotogrammetry for urban areas where no advanced source data (e. g. LiDAR) exist is developed. The method works for flat, shed and gable roofs and provides sufficient accuracy of digital surface model .


Author(s):  
Olga Krivenko ◽  
Peter Kulikov ◽  
Andrey Zaprivoda ◽  
Vitaliy Zaprivoda

The aim of research is to simulate the zones of solar radiation on the curved surfaces of the shells of high-rise buildings for the effective use of renewable solar energy. An urgent task is the development of tools that can substantiate the decision-making by designers about the location of solar thermal devices in the energy-efficient design of curvilinear high-rise buildings. The main attention is paid to high-rise buildings, is actively growing in modern megalopolises and requires a significant energy resource. To optimize the integration of solar thermal devices in high-rise buildings, it is important to take into account a set of design parameters, including parameters of surface shape and location in space. A feature of curved surfaces, considered in the study, is their aerodynamic properties, which provide them with the advantage of choosing among modern high-rise buildings. At the same time, the complexity of setting the parameters of a curved surface to determine the zones of solar radiation for the effective use of regenerative solar energy lies in providing reliable and convenient tools for optimizing decision-making. The study proposes an application of the method based on a discrete geometric model of solar radiation input on the surface of the shells of high-rise buildings, described by compartments of curved geometric surfaces. As a result of modeling, let’s obtain a family of lines of the same level of solar radiation on a certain curved surface for the given parameters of time and geographic location. As an example of simulation modeling, the performed calculations of the instantaneous model of the distribution of solar radiation on the compartments of the curved surfaces of an ellipsoid of revolution, hemisphere, hyperbolic paraboloid. On the basis of the proposed model for the distribution of solar radiation over curvilinear surfaces of buildings, the influence of factors arising in the design process is investigated: changes in the geometric parameters of the surface shape, orientation to the cardinal points, the formation of zones of its own shadow on surfaces. Calculations were performed and instantaneous solar radiation zones were constructed on the surfaces of a hemisphere, a hyperbolic paraboloid with various geometric parameters, taking into account different orientations relative to the cardinal points, and determining the zones of its own shadow. At this stage of the study, the result is an algorithm for constructing zones of different levels of solar radiation on curved surfaces of high-rise buildings. The advantage of the algorithm is the ability to analyze the results of changes in the design parameters of the surface of a high-rise building when placing solar systems on them. The proposed approach will provide a basis for automating the modeling process, will help expand the scope of solar systems in high-rise construction and increase the efficiency of their work


2018 ◽  
Vol 2 ◽  
pp. 535
Author(s):  
Maundri Prihanggo

<p>Saat ini, citra satelit resolusi sangat tinggi digunakan dalam berbagai macam aplikasi, terutama pemetaan skala besar. Sebelum dapat digunakan, citra satelit tersebut harus diorthorektifikasi terlebih dahulu. Data <em>Digital Surface Model </em>(DSM) dan <em>Ground Control Point</em> (GCP) adalah dua data utama yang diperlukan saat melakukan orthorektifikasi. Perbedaan data DSM yang digunakan akan menghasilkan perbedaan nilai ketelitian horizontal pada kedua citra tegak hasil orthorektifikasi. Pada penelitian ini digunakan dua jenis DSM yaitu SRTM dan Terrasar-X. Ketelitian vertikal dari SRTM adalah 90 m sedangkan ketelitian vertikal dari Terrasar-X adalah 12,5 m. Penelitian ini berlokasi di Wilayah Buli, Kabupaten Halmahera Timur, Provinsi Maluku. Terdapat tiga sensor citra satelit yang digunakan yaitu Pleiades, Quickbird dan Worldview-2 yang digunakan pada lokasi penelitian. Total GCP yang digunakan adalah 33 titik, tiap titiknya diukur dengan melakukan pengamatan geodetik dan memiliki ketelitian horizontal ≤15 cm dan ketelitian vertikal ≤30 cm. Ketelitian horizontal dari citra tegak satelit resolusi sangat tinggi diperoleh dengan melakukan uji terhadap Independent Check Point (ICP). Total ICP yang digunakan adalah 12 titik, tiap titik ICP diukur dengan metode dan standar yang sama dengan titik GCP. Ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data SRTM adalah 18,856 m sedangkan ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data Terrasar-X adalah 2.168 m . Hasil dari penelitian ini membuktikan bahwa ketelitian vertikal data DSM yang digunakan memberikan pengaruh pada citra tegak satelit hasil orthorektifikasi tersebut. Mengacu pada Peraturan Kepala BIG nomor 15 tahun 2014, citra tegak satelit hasil orthorektifikasi menggunakan data Terrasar-X sebagai DSM memenuhi ketelitian horizontal peta dasar kelas 3 skala 1:5.000 sedangkan citra tegak satelit hasil orthorektifikasi menggunakan data SRTM sebagai DSM tidak dapat memenuhi ketelitian horizontal peta dasar skala besar.</p><p><strong>Kata kunci:</strong> orthorektifikasi, DSM, ketelitian horizontal</p>


Shore & Beach ◽  
2020 ◽  
pp. 3-13
Author(s):  
Richard Buzard ◽  
Christopher Maio ◽  
David Verbyla ◽  
Nicole Kinsman ◽  
Jacquelyn Overbeck

Coastal hazards are of increasing concern to many of Alaska’s rural communities, yet quantitative assessments remain absent over much of the coast. To demonstrate how to fill this critical information gap, an erosion and flood analysis was conducted for Goodnews Bay using an assortment of datasets that are commonly available to Alaska coastal communities. Measurements made from orthorectified aerial imagery from 1957 to 2016 show the shoreline eroded 0 to 15.6 m at a rate that posed no immediate risk to current infrastructure. Storm surge flood risk was assessed using a combination of written accounts, photographs of storm impacts, GNSS measurements, hindcast weather models, and a digital surface model. Eight past storms caused minor to major flooding. Wave impact hour calculations showed that the record storm in 2011 doubled the typical annual wave impact hours. Areas at risk of erosion and flooding in Goodnews Bay were identified using publicly available datasets common to Alaska coastal communities; this work demonstrates that the data and tools exist to perform quantitative analyses of coastal hazards across Alaska.


Sign in / Sign up

Export Citation Format

Share Document