scholarly journals CALCULATION OF THE INSTANT MODEL OF SOLAR RADIATION DISTRIBUTION ON CURVED SURFACES IN HIGH-RISE BUILDINGS

Author(s):  
Olga Krivenko ◽  
Peter Kulikov ◽  
Andrey Zaprivoda ◽  
Vitaliy Zaprivoda

The aim of research is to simulate the zones of solar radiation on the curved surfaces of the shells of high-rise buildings for the effective use of renewable solar energy. An urgent task is the development of tools that can substantiate the decision-making by designers about the location of solar thermal devices in the energy-efficient design of curvilinear high-rise buildings. The main attention is paid to high-rise buildings, is actively growing in modern megalopolises and requires a significant energy resource. To optimize the integration of solar thermal devices in high-rise buildings, it is important to take into account a set of design parameters, including parameters of surface shape and location in space. A feature of curved surfaces, considered in the study, is their aerodynamic properties, which provide them with the advantage of choosing among modern high-rise buildings. At the same time, the complexity of setting the parameters of a curved surface to determine the zones of solar radiation for the effective use of regenerative solar energy lies in providing reliable and convenient tools for optimizing decision-making. The study proposes an application of the method based on a discrete geometric model of solar radiation input on the surface of the shells of high-rise buildings, described by compartments of curved geometric surfaces. As a result of modeling, let’s obtain a family of lines of the same level of solar radiation on a certain curved surface for the given parameters of time and geographic location. As an example of simulation modeling, the performed calculations of the instantaneous model of the distribution of solar radiation on the compartments of the curved surfaces of an ellipsoid of revolution, hemisphere, hyperbolic paraboloid. On the basis of the proposed model for the distribution of solar radiation over curvilinear surfaces of buildings, the influence of factors arising in the design process is investigated: changes in the geometric parameters of the surface shape, orientation to the cardinal points, the formation of zones of its own shadow on surfaces. Calculations were performed and instantaneous solar radiation zones were constructed on the surfaces of a hemisphere, a hyperbolic paraboloid with various geometric parameters, taking into account different orientations relative to the cardinal points, and determining the zones of its own shadow. At this stage of the study, the result is an algorithm for constructing zones of different levels of solar radiation on curved surfaces of high-rise buildings. The advantage of the algorithm is the ability to analyze the results of changes in the design parameters of the surface of a high-rise building when placing solar systems on them. The proposed approach will provide a basis for automating the modeling process, will help expand the scope of solar systems in high-rise construction and increase the efficiency of their work

Author(s):  
Olga Krivenko ◽  
Peter Kulikov ◽  
Andrey Zaprivoda ◽  
Vitaliy Zaprivoda

The aim of research is to simulate the zones of solar radiation on the curved surfaces of the shells of high-rise buildings for the effective use of renewable solar energy. An urgent task is the development of tools that can substantiate the decision-making by designers about the location of solar thermal devices in the energy-efficient design of curvilinear high-rise buildings. The main attention is paid to high-rise buildings, is actively growing in modern megalopolises and requires a significant energy resource. To optimize the integration of solar thermal devices in high-rise buildings, it is important to take into account a set of design parameters, including parameters of surface shape and location in space. A feature of curved surfaces, considered in the study, is their aerodynamic properties, which provide them with the advantage of choosing among modern high-rise buildings. At the same time, the complexity of setting the parameters of a curved surface to determine the zones of solar radiation for the effective use of regenerative solar energy lies in providing reliable and convenient tools for optimizing decision-making. The study proposes an application of the method based on a discrete geometric model of solar radiation input on the surface of the shells of high-rise buildings, described by compartments of curved geometric surfaces. As a result of modeling, let’s obtain a family of lines of the same level of solar radiation on a certain curved surface for the given parameters of time and geographic location. As an example of simulation modeling, the performed calculations of the instantaneous model of the distribution of solar radiation on the compartments of the curved surfaces of an ellipsoid of revolution, hemisphere, hyperbolic paraboloid. On the basis of the proposed model for the distribution of solar radiation over curvilinear surfaces of buildings, the influence of factors arising in the design process is investigated: changes in the geometric parameters of the surface shape, orientation to the cardinal points, the formation of zones of its own shadow on surfaces. Calculations were performed and instantaneous solar radiation zones were constructed on the surfaces of a hemisphere, a hyperbolic paraboloid with various geometric parameters, taking into account different orientations relative to the cardinal points, and determining the zones of its own shadow. At this stage of the study, the result is an algorithm for constructing zones of different levels of solar radiation on curved surfaces of high-rise buildings. The advantage of the algorithm is the ability to analyze the results of changes in the design parameters of the surface of a high-rise building when placing solar systems on them. The proposed approach will provide a basis for automating the modeling process, will help expand the scope of solar systems in high-rise construction and increase the efficiency of their work


2012 ◽  
Vol 1 (2) ◽  
pp. 33-38 ◽  
Author(s):  
Noer Abyor Handayani ◽  
Dessy Ariyanti

Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 266 ◽  
Author(s):  
Edoardo Alessio Piana ◽  
Benedetta Grassi ◽  
Laurent Socal

Thermal solar systems are interesting solutions to reduce CO 2 emissions and gradually promote the use of renewable sources. However, sizing such systems and analysing their behavior are still challenging issues, especially for the trade-off between useful solar energy maximization and stagnation risk minimization. The new EPB (Energy Performance of Buildings) standard EN 15316-4-3:2017 offers several methods to evaluate the performance of a forced circulation solar system. One of them is a dynamic hourly method that must be used together with EN 15316-5:2017 for the simulation of the stratified storage tank connected with the solar loop. In this work, such dynamic hourly method is extended to provide more realistic predictions. In particular, modeling of the pump operation due to solar fluid temperature exceeding a set threshold, or due to low temperature differential between solar field and storage tank, is introduced as an on–off control. The implemented code is applied to a case study of solar system for the preparation of domestic hot water and the impact of different design parameters is evaluated. The model predicts a higher risk of overtemperature lock-out or stagnation when the solar field surface is increased, the storage volume is reduced and water consumption is set to zero to simulate summer vacation periods. Finally, a simple modulating control with a time step of a few seconds to a few minutes is introduced, quantitatively showing the resulting benefits in terms of useful solar energy increase, back-up operation savings and reduced auxiliary energy use.


2017 ◽  
Vol 21 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Jan Barwicki ◽  
Maciej Kuboń ◽  
Andrzej Marczuk

AbstractPhotovoltaic systems are very efficient concerning proper utilization of solar radiation. However, the nanotechnology solution can replace the photovoltaic by the use of new production technology to lower the price of solar cells to one tenth. Sun provides nearly unlimited energy resource, but existing solar energy harvesting technologies are quite expensive and cannot compete with fossil fuels. The central part of Poland, which represents about 50 percent of the area, gives solar radiation at the level of 1000 kWh·m−2/year. Other new developments, which can help improve existing efficiency of solar systems are: diatoms utilization, artificial photosynthesis, nanoleaves and rotation solar towers.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohammed Benchrifa ◽  
Rachid Tadili ◽  
Ahmed Idrissi ◽  
Hajar Essalhi ◽  
Abdellah Mechaqrane

All studies of solar systems need the hourly values of solar fluxes related to the different components of solar radiation. However, for most sites, measurements are not available. The goal of this paper is to establish an hourly solar radiation data bank for the entirety of Morocco. This data bank will contain the energetic components (global, diffuse, direct, and inclined solar radiation) and the spectral components (ultraviolet I UV , infrared I IR , and photosynthetically active radiation I PAR ). To create this database, in the beginning, we build up models for predicting the various components of the hourly solar radiation, from measurements provided by the different stations owned by the Laboratory of Solar Energy and Environment (LESE). Then, these equations will be verified by using statistical tests. Moreover, we compared our results with those obtained by similar studies. Finally, based on the daily database of global radiation provided by the Laboratory of Solar Energy and Environment, we created an hourly database that unites the various components of solar radiation over 10 years for the entirety of Morocco. Regarding the validity study, the statistical indicators showed that the used models have minimal errors that do not exceed, for the global radiation, -2.93% in Rabat, -3.9% in Tangier,-3.28% in Marrakech, and -0.85% in Fez, and for diffuse radiation, -1.09% in Rabat, -0.68% in Fez,-3.08% in Tangier, and -2.49% in Marrakech. These results show the good quality of the used estimation models. Thus, the data bank that we have realized will fill the gap of the hourly solar data and will meet the needs of engineers, installers of solar systems, and researchers who often need an extensive database.


2018 ◽  
Vol 33 ◽  
pp. 02055
Author(s):  
Alexander Kolosov ◽  
Dmitry Chudinov ◽  
Sergey Yaremenko

Nowadays, the renovation program is being implemented in the megapolises of Russia. Innovative high-rise buildings are built instead of morally and physically obsolete houses, where non-traditional renewable energy sources are used to the fullest extent, under the effect of which they are located. The possibility to use solar systems with variation of their design parameters is considered. It is established that solar systems have high technical potential. The share of heat load, that is provided by using solar energy, varies from 4 to 84% depending on the time of the year. Economic indicators restrain the use of such panels. The payback period is about 8 years at the current cost for thermal energy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


Sign in / Sign up

Export Citation Format

Share Document