Evaluation of Biochemical Factors from Mixed Animal Wastes Feedstock in Biogas Production

2018 ◽  
Vol 5 (3) ◽  
pp. 198-201
Author(s):  
Nanh Lovanh ◽  
◽  
Graciela M. L. Ruiz-Aguilar ◽  
John Loughrin
Author(s):  
Hoàng Thị Thái Hòa ◽  
Trần Thanh Đức ◽  
Hồ Công Hưng ◽  
Nguyễn Quang Cơ ◽  
Nguyễn Thị Thu Thủy ◽  
...  

Sản xuất phân hữu cơ từ chất thải biogas để tạo ra nguồn phân bón và giải quyết ô nhiễm môi trường là vấn đề quan trọng hiện nay. Do đó, nghiên cứu được thực hiện với mục đích đánh giá ảnh hưởng của việc phối trộn một số vật liệu ủ đến chất lượng của phân hữu cơ từ chất thải biogas và từ đó xác định được vật liệu phối trộn cho chất lượng phân hữu cơ từ chất thải biogas tốt nhất. Thí nghiệm được tiến hành tại phường Hương Vân, thị xã Hương Trà, tỉnh Thừa Thiên Huế trong thời gian từ tháng 11/2019 đến tháng 3/2020 trên 6 công thức với các vật liệu và tỷ lệ ủ khác nhau. Thí nghiệm gồm có 03 lần nhắc lại, bố trí theo kiểu RCBD. Kết quả nghiên cứu cho thấy vật liệu và tỷ lệ ủ khác nhau có ảnh hưởng đến tính chất lý, hóa học của phân hữu cơ từ chất thải biogas theo thời gian ủ. Trong các vật liệu ủ thì kết hợp rơm rạ, vỏ lạc với dung dịch và chất cặn hầm ủ biogas (1:1) + chế phẩm Trichoderma và rơm rạ, vỏ lạc, than bùn với dung dịch và chất cặn hầm ủ biogas (1:1:2) + chế phẩm Trichoderma cho chất lượng của phân hữu cơ là tốt nhất (N 2,72 - 2,92%; P2O5 0,92%; K2O 2,84 - 4,64%, OM 33,50 - 38,84%). Hiệu quả kinh tế trong sản xuất phân hữu cơ từ chất thải biogas thu được cũng cao nhất ở các công thức này. Cần mở rộng kết quả nghiên cứu trên quy mô lớn hơn và thử nghiệm hiệu quả của nó với cây trồng góp phần tăng năng suất, cải tạo đất và giảm thiểu ô nhiễm môi trường từ nguồn chất thải chăn nuôi này. ABSTRACT Producing organic fertilizer from animal wastes after biogas treatment to create fertilizer source and solve environmental pollution is now an important issue. Therefore, the study was conducted with the purpose of assessing the effect of mixing some composting materials on the quality of organic fertilizer from animal waste after biogas production and thereby identifying good mixing materials with the best organic fertilizer from animal waste after biogas production. The experiment consisted of 6 treatments with different composting materials and rates which was conducted in Huong Van ward, Huong Tra town, Thua Thien Hue province from November 2019 to March 2020. The experiment consisted of 3 replicates which was arranged in the Randomize Complete Block Design (RCBD). The research results showed that different composting materials and rates affected on the physical and chemical properties of organic fertilizer from animal waste after biogas production. Among the composting materials, the combinations of liquid and solid wastes from the biogas digesters with rice straw and peanut husks (1:1) + Trichoderma; rice straw, peanut husks and peat (1:1:2) + Trichoderma gave the best quality of organic fertilizers (N 2.72 - 2.92%; P2O5 0.61 - 0.92%; K2O 2.84 - 4.64%, OM 33.50 - 38.84%). The highest economic efficiencies also obtained in these treatments. It is necessary to expand the research results on a larger scale and to test its effectiveness on crops that contribute to productivity, soil improvement and environmental pollution from the animal wastes.  


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


2015 ◽  
Vol 2 (3) ◽  
pp. 26-31
Author(s):  
K. Węglarzy ◽  
Yu. Shliva ◽  
B. Matros ◽  
G. Sych

Aim. To optimize the methane digestion process while using different recipes of substrate components of ag- ricultural origin. Methods. The chemical composition of separate components of the substrate of agricultural by-products, industrial wastes, fats of the agrorefi nery and corn silage was studied. Dry (organic) mass, crude protein (fat) fi ber, loose ash, nitrogen-free exhaust were estimated in the components and the productivity of biogas was determined along with the methane content. These data were used as a basis for daily recipes of the substrate and the analysis of biogas production at the biogas station in Kostkowice. Results. The application of by-products of agricultural production solves the problem of their storage on boards and in open containers, which reduces investment costs, related to the installation of units for their storage. Conclusions. The return on investment for obtaining electric energy out of agricultural biogas depends considerably on the kind of the substrate used and on technological and market conditions.


Author(s):  
N. Golub ◽  
M. Potapova ◽  
M. Shinkarchuk ◽  
O. Kozlovets

The paper deals with the waste disposal problem of the alcohol industry caused by the widespread use of alcohol as biofuels. In the technology for the production of alcohol from cereal crops, a distillery spent wash (DSW) is formed (per 1 dm3 of alcohol – 10–20 dm3 DSW), which refers to highly concentrated wastewater, the COD value reaches 40 g O2/dm3. Since the existing physical and chemical methods of its processing are not cost-effective, the researchers develop the processing technologies for its utilization, for example, an anaerobic digestion. Apart from the purification of highly concentrated wastewater, the advantage of this method is the production of biogas and highquality fertilizer. The problems of biotechnology for biogas production from the distillery spent wash are its high acidity–pH 3.7–5.0 (the optimum pH value for the methanogenesis process is 6.8–7.4) and low nitrogen content, the lack of which inhibits the development of the association of microorganisms. In order to solve these problems, additional raw materials of various origins (chemical compounds, spent anaerobic sludge, waste from livestock farms, etc.) are used. The purpose of this work is to determine the appropriate ratio of the fermentable mixture components: cosubstrate, distillery spent wash and wastewater of the plant for co-fermentation to produce an energy carrier (biogas) and effective wastewater treatment of the distillery. In order to ensure the optimal pH for methanogenesis, poultry manure has been used as a co-substrate. The co-fermentation process of DSW with manure has been carried out at dry matter ratios of 1:1, 1:3, 1:5, 1:7 respectively. It is found that when the concentration of manure in the mixture is insufficient (DSW/manure – 1:1, 1:3), the pH value decreases during fermentation which negatively affects methane formation; when the concentration of manure in the mixture is increased (DSW/manure – 1:5, 1:7), the process is characterized by a high yield of biogas and methane content. The maximum output of biogas with a methane concentration of 70 ± 2% is observed at the ratio of components on a dry matter “wastewater: DSW: manure” – 0,2:1:7 respectively. The COD reduction reaches a 70% when using co-fermentation with the combination of components “wastewater: DSW: manure” (0,3:1:5) respectively.


2009 ◽  
Vol 57 (2) ◽  
pp. 119-125
Author(s):  
G. Hadi

The dry matter and moisture contents of the aboveground vegetative organs and kernels of four maize hybrids were studied in Martonvásár at five harvest dates, with four replications per hybrid. The dry matter yield per hectare of the kernels and other plant organs were investigated in order to obtain data on the optimum date of harvest for the purposes of biogas and silage production.It was found that the dry mass of the aboveground vegetative organs, both individually and in total, did not increase after silking. During the last third of the ripening period, however, a significant reduction in the dry matter content was sometimes observed as a function of the length of the vegetation period. The data suggest that, with the exception of extreme weather conditions or an extremely long vegetation period, the maximum dry matter yield could be expected to range from 22–42%, depending on the vegetation period of the variety. The harvest date should be chosen to give a kernel moisture content of above 35% for biogas production and below 35% for silage production. In this phenophase most varieties mature when the stalks are still green, so it is unlikely that transport costs can be reduced by waiting for the vegetative mass to dry.


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

Author(s):  
Juan Galvarino Cerda Balcazar ◽  
Cristiano Maidana ◽  
charles rech ◽  
Mariana Coronas ◽  
Maurício Zanon Antunes

Sign in / Sign up

Export Citation Format

Share Document