scholarly journals Occupational heat stress under high-heat furnace work environments - a comprehensive review on developing countries

2021 ◽  
Vol 7 (14) ◽  
pp. 2068-2092
Author(s):  
Milap SHARMA ◽  
Sarfaraz ALAM ◽  
Narendra MOHAN SURI ◽  
Suman KANT
2020 ◽  
Author(s):  
Jimmy Lee ◽  
Vidhya Venugopal ◽  
P.K. Latha ◽  
Sharifah Alhadad ◽  
Clarence Leow ◽  
...  

2021 ◽  
pp. 102915
Author(s):  
Abdel-Moneim E. Abdel-Moneim ◽  
Abdelrazeq M. Shehata ◽  
Raafat E. Khidr ◽  
Vinod K. Paswan ◽  
Nashaat S. Ibrahim ◽  
...  

2014 ◽  
Vol 3 (3) ◽  
pp. 56 ◽  
Author(s):  
Frimpong Kwasi ◽  
Jacque Oosthuizen ◽  
Eddie Van Etten

<p>Little is known about the health effects of heat in outdoor work and appropriate work and rest schedules for farmers working in developing countries. As temperatures continue to increase in tropical regions, such as Northern Ghana, it is necessary to evaluate how farmers experience and respond to high heat exposures. In this study, WBGT (Wet Bulb Globe Temperature) estimates and the ISO work / rest standards were applied to a cohort of farmers in the rural areas of Bawku East, Northern Ghana, to assess how farmers respond to high heat and how much they rest to protect their health, as well as the level of heat on their productivity. WBGT data was recorded over a period of 6 months among vegetable, cereals, and legume farmers. The ISO proposed and actual rest regimes observed by farmers in the same time period were evaluated. In the dry season the dry bulb temperature rose as high as 45 ºC, while during the humid months of March and April WBGT rose to levels as high as 34 ºC. Farmers worked for nine hours a day during these hot periods with insufficient rest, which has adverse consequences on their health and productivity.</p>


1971 ◽  
Vol 22 (5) ◽  
pp. 797 ◽  
Author(s):  
GD Brown

The thermal status of three unrestrained rams at pasture was studied for a period of 5 days during March in central western New South Wales. A temperature telemetry system was used to measure rectal temperatures, skin surface and subcutaneous temperatures on the mid back, and subcutaneous temperatures of the scrotum of each ram. Rectal temperatures of 40�C and above were recorded for all rams on each day, the highest recorded being 41 9 4 and 41.6�. Rectal temperatures in excess of 40� were also recorded for extended periods between 6.00 p.m. and midnight. Although respiratory frequencies increased with the increase in environmental heat load during the day, no obvious signs of extreme heat stress were noted at these elevated rectal temperatures, whereas sheep exposed to high heat loads in indoor experiments consistently exhibit heat stress at similar rectal temperatures. Rectal temperatures were generally higher and more variable than those reported by other workers for penned sheep in either indoor or outdoor environments. Subcutaneous scrota1 temperatures were usually lower than those which might be expected to induce sterility. Variations in the temperatures measured have been related to the thermal environment and patterns of behaviour of the sheep.


2020 ◽  
Vol 69 (1) ◽  
pp. 15-21
Author(s):  
Daniel J. Smith ◽  
Erin P. Ferranti ◽  
Vicki S. Hertzberg ◽  
Valerie Mac

Background: Outdoor workers are exposed to hot work environments and are at risk of heat-related morbidity and mortality. The purpose of this study was to evaluate the knowledge of migrant farmworkers about first aid for heat-related illness (HRI) symptoms. Methods: The authors recruited 60 migrant farmworkers out of 66 who were approached from vegetable farms in Georgia. They were workers who participated in the 2018 Farmworker Family Health Program (FWFHP). The authors surveyed the workers to assess demographics, prevalence of HRI symptoms, hydration practices, and knowledge of HRI first aid. Descriptive statistics for worker demographics, HRI symptoms, and hydration data were calculated, as were the percentages of correctly answered pilot questions. Findings: Of the 60 workers who chose to participate in this study, more than 50% incorrectly answered pilot questions related to their knowledge of HRI first aid. The two most common HRI symptoms reported were heavy sweating and muscle cramps. More than two thirds reported experiencing at least one HRI symptom during the workday. Mean liquid consumption within this sample was 72.95 oz per day, which is much less than the recommended 32 oz per hour. Conclusion/Application to Practice: Until larger structural change can occur to protect farmworkers, farm owners can prevent morbidity and mortality from inadequate hydration practices and working in high-heat conditions by providing migrant farmworkers with training in heat-related first aid. Appropriate heat-illness interventions should focus on first aid measures to reduce morbidity and mortality related to heat illness in farmworkers.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4565 ◽  
Author(s):  
Ériton Egidio Lisboa Valente ◽  
Mario Luiz Chizzotti ◽  
Cristiane Viol Ribeiro de Oliveira ◽  
Matheus Castilho Galvão ◽  
Silas Sebastião Domingues ◽  
...  

<p>Genetics differences between breeds may determine the tolerance to high temperature, effect dry matter intake and consequently cattle performance. The effect of temperature and humidity index (THI) on diurnal, nocturnal and daily intake, water intake, physiologic parameters and behavior of Nellore (<em>B. indicus</em>) and Angus (<em>B. taurus</em>) bulls were evaluated. Eight Angus and eight Nellore young bulls (337±7.4 kg and 16 months of age) were allocated in two climate-controlled rooms for 32 days. In the period 1, all bulls were housed in thermoneutral conditions (TN, THI = 72.6) for 10 days. In period 2 (10 days), four Angus and four Nellore bulls were subjected to low heat stress (LHS, THI = 76.4) in daytime, and four Angus and four Nellore bulls were subjected to high heat stress (HHS, THI = 81.5) in daytime. The diurnal and daily dry matter intake (DMI) of Nellore were not affected (P&gt;0.05) by heat stress. However, Angus bulls decreased diurnal DMI by 24% and daily DMI decreased (P&lt;0.05) by 15% on HHS. In TN Angus bulls had higher (P&lt;0.05) daily DMI (36.2 g/kg of BW) than Nellore (29.1 g/kg of BW), but in HHS they had similar (P&gt;0.05) daily DMI (31.6 and 30.2 g/kg of BW, respectively). We observed an increase (P&lt;0.05) in respiratory frequency, but water intake was not affected (P&gt;0.05) by heat stress. The heart rate decreased (P&lt;0.05) with heat stress. No differences were found (P&gt;0.05) in feeding behavior. Therefore, THI stress threshold should distinct for Angus and Nellore bulls. The use of feed intake information may improve the prediction of thermic discomfort on specific climate condition. </p>


2019 ◽  
Vol 58 (6) ◽  
pp. 1177-1194 ◽  
Author(s):  
Claudia Di Napoli ◽  
Florian Pappenberger ◽  
Hannah L. Cloke

AbstractHeat waves represent a threat to human health and excess mortality is one of the associated negative effects. A health-based definition for heat waves is therefore relevant, especially for early warning purposes, and it is here investigated via the universal thermal climate index (UTCI). The UTCI is a bioclimate index elaborated via an advanced model of human thermoregulation that estimates the thermal stress induced by air temperature, wind speed, moisture, and radiation on the human physiology. Using France as a test bed, the UTCI was computed from meteorological reanalysis data to assess the thermal stress conditions associated with heat-attributable excess mortality in five cities. UTCI values at different climatological percentiles were defined and evaluated in their ability to identify periods of excess mortality (PEMs) over 24 years. Using verification metrics such as the probability of detection (POD), the false alarm ratio (FAR), and the frequency bias (FB), daily minimum and maximum heat stress levels equal to or above corresponding UTCI 95th percentiles (15° ± 2°C and 34.5° ± 1.5°C, respectively) for 3 consecutive days are demonstrated to correlate to PEMs with the highest sensitivity and specificity (0.69 ≤ POD ≤ 1, 0.19 ≤ FAR ≤ 0.46, 1 ≤ FB ≤ 1.48) than minimum, maximum, and mean heat stress level singularly and other bioclimatological percentiles. This finding confirms the detrimental effect of prolonged, unusually high heat stress at day- and nighttime and suggests the UTCI 95th percentile as a health-meaningful threshold for a potential heat-health watch warning system.


Sign in / Sign up

Export Citation Format

Share Document