scholarly journals Nanotech drug delivery system: The perfect physio-Chemical deal for biological command

2021 ◽  
Vol 9 (2) ◽  
pp. 73-80
Author(s):  
Yogranjan Singh ◽  
Kaustubh Gurnani ◽  
G. K. Satpute

The application of nanotechnology in drug delivery is offering several exhilarating possibilities not only in healthcare but also in agriculture. Nanoparticles combined with the therapeutic agents have a proven edge over problems associated with conventional therapy; however, some issues like side effects and toxicity are still under debate and are of prime concern in utilization in biological systems. Herein, we discuss the role of nanotech drug delivery system mostly in animal and plants- highlighting the comparative accounts of the key techniques for designing of drug in animals and plants, the challenges therein, the important nanoparticles being used in both the area and prospects of the field in the near future.

2012 ◽  
Vol 39 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Md. Akhlaquer Rahman ◽  
Arshad Hussain ◽  
Md. Sarfaraj Hussain ◽  
Mohd. Aamir Mirza ◽  
Zeenat Iqbal

Author(s):  
Asif Eqbal ◽  
Vaseem Ahamad Ansari ◽  
Abdul Hafeez ◽  
Farogh Ahsan ◽  
Mohd Imran ◽  
...  

Nanoemulsions are drug transporters for the delivery of therapeutic agents. They possess the small droplet size having the range of 20×10-9-200×10-9m. The main purpose of using Nanoemulsion is to enhance the drug bio- availability of transdermal drug delivery system. With the help of phase diagram, we can select the components of nanoemulsion depending upon formulas ratio of oil phase, surfactant/co-surfactant and water phase. Nanoemulsion directly used as a topical drug delivery in skin organs. The most useable pharmaceutical application has been developed till date to provide systemic effects to penetrating the full thickness of skin organ layer nanoemulsions can be administered through variety of routes such as percutaneous, perioral, topical, transdermal, ocular and parental administration of medicaments. Nanoemulsions are transparent and slightly opalescent. Nanoemulsion can be prepared through various methods. Nanoemulsions are transparent and slightly opalescent. Factor affecting nanoemulsions are surfactant, viscosity, lipophilic, drug content, pH, concentration of each component, and methodology of formulation. It is unfeasible to test all factors at the various levels. Design of formulation when it comes to experimental design it gives an excellent approach through reducing the time and money.


2020 ◽  
Vol 8 (15) ◽  
pp. 4251-4265 ◽  
Author(s):  
Ram Pada Das ◽  
Beena Gobind Singh ◽  
Amit Kunwar

The study demonstrates the importance of the weight ratio of F127 and gelatin in forming size selective nanoconjugate through a thermal relaxation approach and its potential as an efficient drug delivery system of doxorubicin with reduced side effects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriela Siemiaszko ◽  
Katarzyna Niemirowicz-Laskowska ◽  
Karolina H. Markiewicz ◽  
Iwona Misztalewska-Turkowicz ◽  
Ewelina Dudź ◽  
...  

Abstract Background In recent years, targeted drug delivery strategies have received special attention from the scientific world due to advantages such as more effective therapy and reduction of side effects. The principle of operation is delayed excretion from the bloodstream of the drug delivery system compared to the drug itself, as well as facilitated penetration into diseased cells thanks to the use of ligands recognized by appropriate receptors. Particularly interesting drug carriers are amphiphilic copolymers that form nano-sized micelles with a drug, which can release the drug at a specific place in the body under the influence of appropriate stimuli. Results We describe the synthesis of the diblock polymer, poly(2-hydroxyethyl acrylate)-b-poly(N-vinylcaprolactam) using RAFT/MADIX (Reversible Addition-Fragmentation chain Transfer/MAcromolecular Design by Interchange of Xanthate) controlled polymerization affording polymers with good dispersity according to SEC (Size-Exclusion Chromatography). Some post-modifications of the polymer with folic acid were then performed as evidenced by NMR (Nuclear Magnetic Resonance), UV–Vis (UltraViolet–Visible) and FT-IR (Fourier-Transform Infrared) spectroscopy, and TGA (ThermoGravimetric Analysis). The formation of stable micellar systems from polymers with and without the drug, 5-fluorouracil, was confirmed by DLS (Dynamic Light Scattering) and zeta potential measurements, and TEM (Transmission Eelectron Microscopy) imaging. Finally, the cloud point of the polymers was investigated, which turned out to be close to the temperature of the human body. Most importantly, these micellar systems have been explored as a drug delivery system against colon cancer, showing increased cytotoxicity compared to the drug alone. This effect was achieved due to the easier cellular uptake by the interaction of folic acid and its receptors on the surface of cancer cells. Conclusions The presented results constitute a solid foundation for the implementation of a nano-sized drug delivery system containing folic acid for practical use in the treatment of drug-resistant cancer, as well as more effective therapy with fewer side effects. Graphical Abstract


2019 ◽  
Vol 6 (2) ◽  
pp. 1879-1887
Author(s):  
Shayeri Chatterjee ◽  
◽  
Beduin Mahanti ◽  
Subhabrota Majumdar ◽  
Rana Mazumder

Author(s):  
Soumya Singh ◽  
Dherendra Sahu

Recent research on idealizing drug delivery system which is progressing at a prodigious rate and aims at development of drug delivery system (DDS), with maximum therapeutic advantages of drug delivery, thus resulting in safe and effective management of disease. More and more developments in delivery systems are being integrated to optimize the efficacy and cost effectiveness of the therapy. New classes of pharmaceuticals, biopharmaceuticals are fueling the rapid evolution of drug delivery technology. Microsponge technology has been introduced in topical drug products to facilitate the controlled release of active drug into the skin in order to reduce systemic exposure and minimize local cutaneous reactions to active drugs. Microsponge consists of microporous beads loaded with active agent. When applied to the skin, the microsponge releases its active ingredient on a time mode and also in response to other stimuli (rubbing, temperature, pH etc.) that are used mostly for topical and recently for oral administration Microsponges are porous, polymeric microspheres that are mostly used for prolonged topical administration. Microsponges are designed to deliver a pharmaceutically active ingredient efficiently at minimum dose and also to enhance stability, reduce side effects, and modify drug release profiles. Microsponges are prepared by several methods utilizing emulsion system or by suspension polymerization in a liquid–liquid system. The most common emulsion system used is oil-in-water (o/w), with the microsponges being produced by the emulsion solvent diffusion (ESD) method. Microsponge delivery system (MDS) can provide increased efficacy for topically active agents with enhanced safety, extended product stability, enhanced formulation flexibility, reduced side effects and improved aesthetic properties in an efficient and novel manner. In addition these are non-irritating, non-mutagenic, non-allergenic, and nontoxic. The present review introduces microsponge technology in great detail.


2019 ◽  
Vol 26 (28) ◽  
pp. 5278-5292 ◽  
Author(s):  
Aditi Singh ◽  
Nikolai Norevik Myklebust ◽  
Sarah Marie Vie Furevik ◽  
Ragnhild Haugse ◽  
Lars Herfindal

:Acute Myeloid Leukaemia (AML) is the neoplastic transformation of Hematopoietic Stem Cells (HSC) and relapsed disease is a major challenge in the treatment. Despite technological advances in the field of medicine and our heightened knowledge regarding the pathogenesis of AML, the initial therapy of “7+3” Cytarabine and Daunorubicin has remained mainly unchanged since 1973. AML is a disease of the elderly, and increased morbidity in this patient group does not allow the full use of the treatment and drug-resistant relapse is common.:Nanocarriers are drug-delivery systems that can be used to transport drugs to the bone marrow and target Leukemic Stem Cells (LSC), conferring less side-effects compared to the free-drug alternative. Nanocarriers also can be used to favour the transport of drugs that otherwise would not have been used clinically due to toxicity and poor efficacy. Liposomes are a type of nanocarrier that can be used as a dedicated drug delivery system, which can also have active ligands on the surface in order to interact with antigens on the target cells or tissues. In addition to using small molecules, it is possible to attach antibodies to the liposome surface, generating so-called immunoliposomes. By using immunoliposomes as a drug-delivery system, it is possible to minimize the toxic side effects caused by the chemotherapeutic drug on healthy organs, and at the same time direct the drugs towards the remaining AML blasts and stem cells.:This article aims to explore the possibilities of using immunoliposomes as a drug carrier in AML therapy. Emphasis will be on possible target molecules on the AML cells, leukaemic stem cells, as well as bone marrow constituents relevant to AML therapy. Further, some conditions and precautions that must be met for immunoliposomes to be used in AML therapy will be discussed.


Sign in / Sign up

Export Citation Format

Share Document