scholarly journals Dynamic Model of Single Torrent with File-Sharing P2P Network

2018 ◽  
Vol 25 (4) ◽  
pp. 421-434
Author(s):  
Alexandra I. Kononova

In this work, a model of distribution of the file in P2P file-sharing network constructed on the basis of ordinary differential equations is considered. The phase variables which describe a condition of distribution of the file (as a first approximation is the number of users – seeder and leecher on distribution) are defined, the factors which influence the file distribution and the change of the number of users participating in exchange are analysed. On the basis of the analysis the system of the differential equations describing distribution evolution – dynamic model of evolution of distribution is written down. The life cycle of distribution in file-sharing network consisting of four stages – distribution creation, a fast gain leechers, stabilization and (for distributions of the files losing over time relevance) fading is considered. To each stage there corresponds the ratio of model parameters, and parameters change over time. The process of measuring the condition of real distributions is described. An example of the trajectory corresponding to the evolution of real distribution at a large torrent tracker is shown. Further, the distribution stabilization stage which is characterized by constants as a first approximation parameters is considered. Equilibrium points of the dynamic model of distribution evolution are investigated, their possible quantity and type are described. All configurations of the general position, possible in the model of distribution evolution in a file-sharing P2P network are described. Phase portraits of each configuration are represented. The influence of various administrative measures on a stock of distribution stability is analysed. Ambiguity of the influence of a rating accounting system on the stability of distributions is shown. The positive influence of a system of timebonus, feedback and absorption of distributions is also shown.

2019 ◽  
Vol 26 (3) ◽  
pp. 351-359
Author(s):  
Alexandra I. Kononova ◽  
Larisa G. Gagarina

In this work, the model of development of the P2P file exchange network organized by a torrent tracker is considered. The model is constructed on the basis of ordinary differential equations. The phase variables describing a status of a torrent tracker and the network organized by it (in first approximation is the number of the users of the tracker who are actively participate in information exchange, and the number of active torrents) are defined, the factors influencing the change of users number and the number of torrents are analyzed. On the basis of the analysis the system of differential equations, in first approximation describing evolution of the file exchange network organized by the torrent tracker — a hard dynamic model of evolution of the torrent tracker is written. Equilibrium points of hard model of evolution of the tracker are investigated, their possible quantity and type is described. All configurations of the general provision, possible in a hard model of evolution of the torrent tracker are described. The phase portrait of the hard model is represented. On the basis of the analysis of the hard model the system of differential equations describing evolution of a file exchange network with accounting of dependence of new users inflow intensity on a total quantity of potential audience of the torrent tracker, and also dependences of speed of torrents extinction on the number of users falling on one torrent — a soft dynamic model of evolution of a torrent tracker is written. Equilibrium points of a soft model of tracker evolution are investigated, their possible quantity and type is described. All configurations of the general provision, possible in a soft model of evolution of the torrent tracker are described. Phase portraits of each configuration are represented. The ratio of parameters necessary for the stability of the tracker a stable status is received. The influence of different administrative measures on a stock of the tracker stability in whole is analyzed. The need of support of torrents by administration at highly specialized torrent trackers with small potential audience is shown.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Yuxing Wang ◽  
Chunyu Wei

The solution multiplicity of natural ventilation in buildings is very important to personnel safety and ventilation design. In this paper, a four-zone model of buoyancy ventilation in typical underground building is proposed. The underground structure is divided to four zones, a differential equation is established in each zone, and therefore, there are four differential equations in the underground structure. By solving and analyzing the equilibrium points and characteristic roots of the differential equations, we analyze the stability of three scenarios and obtain the criterions to determine the stability and existence of solutions for two scenarios. According to these criterions, the multiple steady states of buoyancy ventilation in any four-zone underground buildings for different stack height ratios and the strength ratios of the heat sources can be obtained. These criteria can be used to design buoyancy ventilation or natural exhaust ventilation systems in underground buildings. Compared with the two-zone model in (Liu et al. 2020), the results of the proposed four-zone model are more consistent with CFD results in (Liu et al. 2018). In addition, the results of proposed four-zone model are more specific and more detailed in the unstable equilibrium point interval. We find that the unstable equilibrium point interval is divided into two different subintervals corresponding to the saddle point of index 2 and the saddle focal equilibrium point of index 2, respectively. Finally, the phase portraits and vector field diagrams for the two scenarios are given.


2020 ◽  
Vol 54 (7) ◽  
pp. 645-651
Author(s):  
A. I. Kononova ◽  
L. G. Gagarina

2020 ◽  
Vol 42 (1) ◽  
pp. 37-103
Author(s):  
Hardik A. Marfatia

In this paper, I undertake a novel approach to uncover the forecasting interconnections in the international housing markets. Using a dynamic model averaging framework that allows both the coefficients and the entire forecasting model to dynamically change over time, I uncover the intertwined forecasting relationships in 23 leading international housing markets. The evidence suggests significant forecasting interconnections in these markets. However, no country holds a constant forecasting advantage, including the United States and the United Kingdom, although the U.S. housing market's predictive power has increased over time. Evidence also suggests that allowing the forecasting model to change is more important than allowing the coefficients to change over time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


2018 ◽  
Vol 230 (5) ◽  
pp. 818-821
Author(s):  
M. G. Yumagulov ◽  
L. S. Ibragimova ◽  
I. Zh. Mustafina

2018 ◽  
Vol 16 ◽  
pp. 01005
Author(s):  
Felix Sadyrbaev

Mathematical models of artificial networks can be formulated in terms of dynamical systems describing the behaviour of a network over time. The interrelation between nodes (elements) of a network is encoded in the regulatory matrix. We consider a system of ordinary differential equations that describes in particular also genomic regulatory networks (GRN) and contains a sigmoidal function. The results are presented on attractors of such systems for a particular case of cross activation. The regulatory matrix is then of particular form consisting of unit entries everywhere except the main diagonal. We show that such a system can have not more than three critical points. At least n–1 eigenvalues corresponding to any of the critical points are negative. An example for a particular choice of sigmoidal function is considered.


Sign in / Sign up

Export Citation Format

Share Document