MECHANICAL PROPERTIES OF EPOXY RESIN BASED GRAPHENE NANO PARTICLES COMPOSITE

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Durgaprasad Kollipara ◽  
Prabhakar Gope VNB ◽  
Raja Loya

Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. A Graphene nanoparticle (GNP) is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. In this paper the effects of GNP on composites based on epoxy resin were analyzed. Different contents of GNP (0 – 4.5 vol. %) were added to the epoxy resin. The GNP/epoxy composite was fabricated under room temperature. Mechanical tests result such as tensile, flexural and hardness test show enhancements of the mechanical properties of the GNP/epoxy composite. The experimental results clearly show an improvement in Young’s modulus, tensile strength, and hardness as compared to pure epoxy. The results of this research are strong evidence for GNP/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as super capacitors, transistors, etc.

2020 ◽  
Vol 44 (6) ◽  
pp. 421-426
Author(s):  
Ashish Kumar Srivastava ◽  
Nagendra Kumar Maurya ◽  
Manish Maurya ◽  
Shashi Prakash Dwivedi ◽  
Ambuj Saxena

The application range in defense, aerospace and automotive sectors have enabled aluminium metal matrix composites to emerge in different technological fields due to enhanced micro structural and mechanical characteristics. In the present study, friction stir processing is used to fabricate Al2024/SiC composite with one, two and three passes of the cylindrical tool. Optical microscopy and scanning electronic microscope (SEM) were used to validate the processed sample and to justify the morphological aspects. Energy dispersive spectroscopy (EDS) analysis has also performed to confirm the presence of SiC particles in the composite. It also includes the analysis of mechanical properties such as tensile strength, Rockwell hardness test and nanoindentation to characterize the prepared samples. Improvement in tensile strength with a maximum of 443 MPa, the hardness of 121 HRB and nanoindentation of the specimen was depicted through the mechanical tests.


2018 ◽  
Vol 24 (8) ◽  
pp. 19
Author(s):  
Lamyaa Kalel

In this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examined by optical microscopy before and after heat treatment. The results of this work showed that precipitation of Mg2Si as a secondary phase and improvements in mechanical properties with increase in the percentage of SiC and Al2O3.  Also, the results of SiC revealed an improvement in mechanical properties more than for Al2O3 such as hardness, impact strength, yield strength, tensile strength, increasing the plasticity constant (k) and decreasing the strain hardening exponent (n).   


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2018 ◽  
Vol 6 (1) ◽  
pp. 347-353
Author(s):  
Krisztina Roman ◽  
Zita Szabo ◽  
Bence Szeman ◽  
Tamas Szabo

In this study, the aged mechanical properties and the modifier structure were determined. Bio-materials are often used as additives to plastics, in order to make the degradation easier in the environment. We examined the differences of the properties of samples differently aged; the ages of the samples were 1 and 3 years. The properties that were gathered from the mechanical tests, such as tensile-, flexural-, impact-, and hardness-test, show changes depending on the ages of the samples. Due to the aging, decrease of mechanical properties was experienced. The microcellular structures of the composites were studied by SEM analysis in order to understand the changes of the structures. It can be seen on the recording that the corn cob strengthens and sticks to the cells wall. The internal changes of the structure that were caused by the aging cannot be seen on the SEM micrographs.


2021 ◽  
Vol 889 ◽  
pp. 27-31
Author(s):  
Norie A. Akeel ◽  
Vinod Kumar ◽  
Omar S. Zaroog

This research Investigates the new composite materials are fabricated of two or more materials raised. The fibers material from the sources of natural recycled materials provides certain benefits above synthetic strengthening material given that very less cost, equivalent strength, less density, and the slightest discarded difficulties. In the current experiments, silk and fiber-reinforced epoxy composite material is fabricated and the mechanical properties for the composite materials are assessed. New composite materials samples with the dissimilar fiber weight ratio were made utilizing the compression Molding processes with the pressure of 150 pa at a temperature of 80 °C. All samples were exposed to the mechanical test like a tensile test, impact loading, flexural hardness, and microscopy. The performing results are the maximum stress is 33.4MPa, elastic modulus for the new composite material is 1380 MPa, and hardness value is 20.64 Hv for the material resistance to scratch, SEM analysis of the microstructure of new composite materials with different angles of layers that are more strength use in industrial applications.


2014 ◽  
Vol 60 (No. 4) ◽  
pp. 165-171 ◽  
Author(s):  
P. Valášek ◽  
J. Kejval ◽  
M. Müller

Hard inorganic particles in the interaction with polymeric materials increase wear resistance. Also reactoplastics are suitable for filling with micro- and nano-particles for a purpose of some mechanical properties optimization. The paper compares chosen mechanical properties – hardness, wear resistance and tensile characteristics of epoxy resin filled with artificial corundum with various middle particles sizes and their ratio combination. Mentioned systems can be used in a sphere of the agricultural production at renovation of machine parts, they can serve for creating resistant layers on machines, floors and grillages at the same time. The aim of the carried out experiment is to compare the properties of reactoplastics filled with a primary and secondary raw material and to define an optimum ratio of the filler particle size relating to a given mechanical quality. The artificial corundum was chosen as the primary material, the waste corundum from the process of material mechanical treatment was chosen as the secondary one.    


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 972 ◽  
Author(s):  
Junkai Liu ◽  
Wenbo Liu ◽  
Zhe Hao ◽  
Tiantian Shi ◽  
Long Kang ◽  
...  

Two kinds of experimental ferritic/martensitic steels (HT-9) with different Si contents were designed for the fourth-generation advanced nuclear reactor cladding material. The effects of Si content and tempering temperature on microstructural evolution and mechanical properties of these HT-9 steel were studied. The microstructure of experimental steels after quenching and tempering were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); the mechanical properties were investigated by means of tensile test, Charpy impact test, and hardness test. The microscopic mechanism of how the microstructural evolution influences mechanical properties was also discussed. Both XRD and TEM results showed that no residual austenite was detected after heat treatment. The results of mechanical tests showed that the yield strength, tensile strength, and plasticity of the experimental steels with 0.42% (% in mass) Si are higher than that with 0.19% Si, whereas hardness and toughness did not change much; when tempered at 760 °C, the strength and hardness of the experimental steels decreased slightly compared with those tempered at 710 °C, whereas plasticity and toughness increased. Further analysis showed that after quenching at 1050 °C for 1 h and tempering at 760 °C for 1.5 h, the comprehensive mechanical properties of the 0.42% Si experimental steel are the best compared with other experimental steels.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Muhammad Hafiz Kamarudin ◽  
Mohd Suri Saringat ◽  
Nor Hisham Sulaiman

This study about laminated bamboo strip from gigantochloa levis type mixed with epoxy composite. Due to the existence of demand for products that are comfortable, healthy and environmentally friendly, this research has focused on the use of renewable sources that is bamboo. Bamboos are some of fastest growing plant in the world and also have a higher compressive strength than wood, brick or concrete and a tensile strength that rivals steel. Certain species of bamboo can grow 35 inchies within 24 hour period, at a rate of 3 cm/h. That means bamboos can growth of approximately 1 mm every 2 minutes. In this study, the bamboo strip reinforced with epoxy was processed through hand lay-out method. Bamboo strips are combined with epoxy for a total sample thickness of 3 mm. This study is performed using the impact test that is Charpy (ASTM D-6110) and Izod (ASTM D-256) to measure the mechanical properties of energy absorbtion, followed by hardness test (ASTM D-1037). The 0, 60 and 90 degree of laminated bamboo strip epoxy composite with two types of load 7 kg and 14 kg has been tested. It is found that the 0 degree specimen Charpy test give the best value is 4.79 Joule energy absorbtion for 14 kg load. While for the Izod test, the best composition is also 0 degree with 4.51 Joule energy absorbtion for 14 kg load. It is shown that when the degree of bamboo laminate configuration increases, the impact absorbtion decrease. The result also shown that, when the load is increase the impact also increases. It means that got relative significant between bamboo strip configuration and load. The impact properties relate to the loading weight. The hardness test also shown that the laminated bamboo strip for 14 kg load resulting 91 rating, that is more higher than 7 kg load that is 84. It is shown that more loads will result more hardness rating for the laminated bamboo strip.


Sign in / Sign up

Export Citation Format

Share Document