scholarly journals Use of an Indoor Solar Flash Test Device to Evaluate Production Loss Associated to Specific Defects on Photovoltaic Modules

2020 ◽  
Vol 15 (5) ◽  
pp. 639-646
Author(s):  
Silvia Luciani ◽  
Gianluca Coccia ◽  
Sebastiano Tomassetti ◽  
Mariano Pierantozzi ◽  
Giovanni Di Nicola

During their lifetime, photovoltaic (PV) plants are subject to a normal degradation of their components, and they are consequently characterized by decrease of the expected production. In order to prevent and evaluate failures and loss of production, specific tests can be carried out on the PV modules. Non-destructive methods, such as visual inspection and infrared thermography, can be performed in order to determine production failures or defects on the PV modules. I-V curves allow to estimate the performance of photovoltaic modules and strings, estimating the deviation between the power of the examined module and that declared by the manufacturer. The aim of this work is to evaluate the efficiency loss of photovoltaic modules associated to specific defects, causing in a systematic way some faults on a set of brand-new modules and assessing the relative decrease of power. The set of brand-new photovoltaic modules, after being damaged, was experimentally characterized determining their I-V curves by means of an indoor solar flash test device based on a class A+ AM 1.5 solar simulator. Using the I-V curves as a dataset, it was possible to estimate the incidence of different defects on the power of the photovoltaic module being considered.

Author(s):  
Julius Yellowhair ◽  
Clifford K. Ho

Standard glass and polymer covers on photovoltaic modules can partially reflect the sunlight causing glint and glare. Glint and glare from large photovoltaic installations can be significant and have the potential to create hazards for motorists, air-traffic controllers and pilots flying near installations. In this work, the reflectance, surface roughness and reflected solar beam spread were measured from various photovoltaic modules acquired from seven different manufacturers. The surface texturing of the PV modules varied from smooth to roughly textured. Correlations between the measured surface texturing (roughness parameters) and beam spread (subtended angle) were determined. These correlations were then used to assess surface texturing effects on transmittance and ocular impacts of glare from photovoltaic module covers. The results can be used to drive the designs for photovoltaic surface texturing to improve transmittance and minimize glint/glare.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8358
Author(s):  
Grzegorz Trzmiel ◽  
Jaroslaw Jajczyk ◽  
Ewa Kardas-Cinal ◽  
Norbert Chamier-Gliszczynski ◽  
Waldemar Wozniak ◽  
...  

The paper presents an original method underlying an efficient tool for assessing the condition of photovoltaic (PV) modules, in particular, those made of amorphous cells. Significantly random changes in operational parameters characterize amorphous cell operation and cause them to be challenging to test, especially in working conditions. To develop the method, the authors modified the residual method with incorporated histograms. The proposed method has been verified through experiments that show the usefulness of the proposed approach. It significantly minimizes the risk of false diagnostic information in assessing the condition of photovoltaic modules. Based on the proposed methods, the inference results confirm the effectiveness of the concept for evaluating the degree of failure of the photovoltaic module described in the paper.


2021 ◽  
Vol 65 (2-4) ◽  
pp. 264-270
Author(s):  
Silvia Luciani ◽  
Gianluca Coccia ◽  
Sebastiano Tomassetti ◽  
Mariano Pierantozzi ◽  
Giovanni Di Nicola

The comparison between I-V (current-voltage) curves measured on site and I-V curves declared by the manufacturer allows to detect decrease of performance and control the degradation of photovoltaic modules and strings. On site, I-V curves are usually obtained under operating conditions (OPCs), i.e. at variable solar radiation and module temperature. OPC curves must be translated into standard test conditions (STCs), at a global irradiance of 1000 W/m2 and a module temperature of 25 °C. The correction at STC conditions allows to estimate the deviation between the power of the examined module and the maximum power declared by the manufacturer. A possible translation procedure requires two correction parameters: Rs’, the internal series resistance, and k’, the corresponding temperature coefficient. The aim of this work is to determine the correction parameters carrying out specific experimental tests as indicated by IEC 60891. A set of brand-new photovoltaic modules was experimentally characterized determining their I-V curves by means of an indoor solar flash test device based on a class A+ AM 1.5 solar simulator. Using the OPC I-V curves, obtained at several conditions of irradiance and temperature, it was possible to determine the correction parameters of the photovoltaic modules being considered.


Author(s):  
Shahab Ahmad

Degradation of on-field PV modules is inevitable but a normal process; however, it is a challenging task to explore the causes behind it. Manufacturers and researchers, to know the causes of degradation, employ both destructive and non-destructive procedures. In this study, nine different PV modules from three different manufacturers have been taken and their electrical output data, over several days, has been collected. The electrical parameters of PV modules are compared with the nameplate data to analyze the average yearly degradation in the electrical performance. Moreover, using visual inspection different degradation modes are identified. Finally, it is concluded that environment is not the only factor but the material used and the processing techniques employed by manufacturers are equally responsible for degradation in the output efficiency of PV modules.


2018 ◽  
Vol 27 ◽  
pp. 147-151
Author(s):  
Gabriela Demian ◽  
Mihai Demian ◽  
Stefan Radu ◽  
Sandu Dubovan

This paper presents aplying a multi-criteria decision methods to evaluate an optimum photovoltaic module for the construction of a solar park. In this work, seven number of alternative of photovoltaic modules and four criteria for selection is used for the optimal solution. The result from the research demonstrate which of the analyzed PV modules is the most convenient to be used for construction of a solar park.


2014 ◽  
Vol 472 ◽  
pp. 562-566
Author(s):  
M.F.J. Bione ◽  
M.C. Alonso-García ◽  
M.B.A. Zamorano ◽  
F. Chenlo

This paper presents the results of the characterization of photovoltaic modules after 20 years of outdoor exposure, and 10 years of operation in Brazil. Several samples of the installed modules were sent to CIEMAT laboratories in Madrid (Spain), where visual inspection, IR characterization, analysis of the chemical composition of the modules, and electrical characterization was performed. I-V curves were measured indoors with solar simulator, and main curve parameters were compared to those obtained from an equivalent module without external exposure. The effect of dust and dirt was evaluated. Series and shunt resistance were calculated, relating these values with the power losses and the visual defects.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sakaros Bogning Dongue ◽  
Donatien Njomo ◽  
Lessly Ebengai

This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1283
Author(s):  
José Ignacio Morales-Aragonés ◽  
Miguel Dávila-Sacoto ◽  
Luis G. González ◽  
Víctor Alonso-Gómez ◽  
Sara Gallardo-Saavedra ◽  
...  

Current–voltage (I–V) curve tracers are used for measuring voltage and current in photovoltaic (PV) modules. I–V curves allow identifying certain faults in the photovoltaic module, as well as quantifying the power performance of the device. I–V curve tracers are present in different topologies and configurations, by means of rheostats, capacitive loads, electronic loads, transistors, or by means of DC–DC converters. This article focuses on presenting all these configurations. The paper shows the electrical parameters to which the electronic elements of the equipment are exposed using LTSpice, facilitating the appropriate topology selection. Additionally, a comparison has been included between the different I–V tracers’ topologies, analyzing their advantages and disadvantages, considering different factors such as their flexibility, modularity, cost, precision, speed or rating, as well as the characteristics of the different DC–DC converters.


2021 ◽  
Vol 32 (4) ◽  
Author(s):  
Sergiu Deitsch ◽  
Claudia Buerhop-Lutz ◽  
Evgenii Sovetkin ◽  
Ansgar Steland ◽  
Andreas Maier ◽  
...  

AbstractHigh resolution electroluminescence (EL) images captured in the infrared spectrum allow to visually and non-destructively inspect the quality of photovoltaic (PV) modules. Currently, however, such a visual inspection requires trained experts to discern different kinds of defects, which is time-consuming and expensive. Automated segmentation of cells is therefore a key step in automating the visual inspection workflow. In this work, we propose a robust automated segmentation method for extraction of individual solar cells from EL images of PV modules. This enables controlled studies on large amounts of data to understanding the effects of module degradation over time—a process not yet fully understood. The proposed method infers in several steps a high-level solar module representation from low-level ridge edge features. An important step in the algorithm is to formulate the segmentation problem in terms of lens calibration by exploiting the plumbline constraint. We evaluate our method on a dataset of various solar modules types containing a total of 408 solar cells with various defects. Our method robustly solves this task with a median weighted Jaccard index of $$94.47\%$$ 94.47 % and an $$F_1$$ F 1  score of $$97.62\%$$ 97.62 % , both indicating a high sensitivity and a high similarity between automatically segmented and ground truth solar cell masks.


Sign in / Sign up

Export Citation Format

Share Document