scholarly journals Multiple Slip and Inspiration Effects on Hydromagnetic Casson Fluid in a Channel with Stretchable Walls

2020 ◽  
Vol 38 (4) ◽  
pp. 817-826
Author(s):  
Bandaru Mallikarjuna ◽  
Sadhu Ramprasad ◽  
Yathiraju Sudheer Kalyan Chakravarthy

Increasingly innovatory techniques are being developed for the manufacturer of coated sheets. Magnetite non-Newtonian fluids have been shown to exhibit stretchable wall slip, which arises due to non-adherence of the non-Newtonian fluid to the boundary. Motivated by the physical nature of the magnetic non-Newtonian fluid in manufacturing transport phenomena, we develop a model to analyze the collective influence of velocity and thermal slips, radiative heat flux effects on fluid and heat transport phenomena in magnetic non-Newtonian fluid flow in a channel with stretchable walls. Governing equations are non-dimensionalized and solved numerically. Grid independence test has been performed and then compared with existing literature in limiting cases. Results are discussed with the aid of graphs for the sway of several physical parameters, Casson parameter, Magnetic parameter, Thermal radiation parameter on fluid velocity, as well as temperature profiles for different cases: No-slip, only first-order slip, and first and second-order slips.

2020 ◽  
Vol 50 (4) ◽  
pp. 315-320
Author(s):  
Om Prakash Verma ◽  
Oluwole Daniel Makinde ◽  
R. L. Monaledi

Analytical investigation is performed into an unsteady Magnetohrodynamics mixed convective Casson fluid flow and heat transfer characteristics with thermal radiation, wall slip, heat source and buoyancy force in a permeable vertical channel. The fluid is injected into the left wall of the channel and sucked out at right wall. The governing momentum and energy balance equations are achieved and tackled analytically. The effects of numerous thermophysical parameters on the temperature profiles, velocity, Nusselt number as well as skin friction are presented graphically and discussed qualitatively. The results show that a temporal decline in the pressure gradient causes both the temperature and fluid velocity to decrease. Moreover, the enhancement in heat transfer due to wall injection/suction also causes the skin friction to decrease.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 495 ◽  
Author(s):  
Nargis Khan ◽  
Iram Riaz ◽  
Muhammad Sadiq Hashmi ◽  
Saed A. Musmar ◽  
Sami Ullah Khan ◽  
...  

The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation. The impacts of the physical parameters on fluid velocity components, temperature and concentration profiles, and entropy generation number are presented. Simulation results revealed that axial component of velocity decreases with variation of Casson fluid parameter. A declining variation in Bejan number was noticed with increment of Casson fluid constant. Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and stretching ratio constant.


2021 ◽  
Vol 13 (1) ◽  
pp. 31-45
Author(s):  
S. Hazarika ◽  
S. Ahmed

An analysis is conducted to investigate the problem of heat/mass transfer in MHD free convective flow of Casson-fluid in a vertical channel embedded with saturated porous medium past through carbon nanotubes in the form of single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs) with engine oil as base fluid. In this article, the impact of CNT’s on velocity, temperature, shear stress and rate of heat transfer of the nanofluid has been investigated and studied graphically for the effects of different key physical parameters involved. The validity of this flow model is presented and is found satisfactory agreement with published results. The results state that, fluid velocity accelerates for greater values of Casson parameter and nanoparticles volume fraction, while thermal radiation (R) and heat generation (Q) assume a significant role in CNT's. Applications of this study arise in broad area of science and engineering such as thermal conductivity, energy storage, biomedical applications, air and water filtration, fibers and fabrics.


Author(s):  
Wan Faezah Wan Azmi ◽  
Ahmad Qushairi Mohamad ◽  
Lim Yeou Jiann ◽  
Sharidan Shafie

Casson fluid is a non-Newtonian fluid with its unique fluid behaviour because it behaves like an elastic solid or liquid at a certain condition. Recently, there are several studies on unsteady Casson fluid flow through a cylindrical tube have been done by some researchers because it is related with the real-life applications such as blood flow in vessel tube, chemical and oil flow in pipelines and others. Therefore, the main purpose of the present study is to obtain analytical solutions for unsteady flow of Casson fluid pass through a cylinder with slip velocity effect at the boundary condition. Dimensional governing equations are converted into dimensionless forms by using the appropriate dimensionless variables. Dimensionless parameters are obtained through dimensionless process such as Casson fluid parameters. Then, the dimensionless equations of velocity with the associated initial and boundary conditions are solved by using Laplace transform with respect to time variable and finite Hankel transform of zero order with respect to the radial coordinate. Analytical solutions of velocity profile are obtained. The obtained analytical result for velocity is plotted graphically by using Maple software. Based on the obtained result, it can be observed that increasing in Casson parameter, time and slip velocity will lead to increment in fluid velocity. Lastly, Newtonian fluid velocity is uniform from the boundary to the center of cylinder while Casson fluid velocity is decreased when approaching to the center of cylinder. The present result is validated when the obtained analytical solution of velocity is compared with published result and found in a good agreement.


2020 ◽  
Vol 45 (3) ◽  
pp. 247-256
Author(s):  
Mustafa Turkyilmazoglu

AbstractMomentum and thermal transport through open-celled metallic foams filled in a channel of small height is studied in the present technical brief. Fully developed momentum and thermal layers via the Brinkman–Darcy model enable us to obtain closed-form solutions regarding the fluid velocity and temperature distributions of metal and fluid, all depending upon a factor related to the wall slip velocity. A comparative study on the pertinent physical parameters helps us conclude that the wall slip cools the porous channel, enhancing the rate of heat transfer. In addition to this, increasing pore density leads to an effective reduction in the entropy generation number, followed by further reduction with the nonzero slip velocity, except the near-wall regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Dennis Ling Chuan Ching ◽  
Ilyas Khan ◽  
Hamzah Bin Sakidin ◽  
Muhammad Jamil ◽  
...  

AbstractThe present work used fractional model of Casson fluid by utilizing a generalized Fourier’s Law to construct Caputo Fractional model. A porous medium containing nanofluid flowing in a channel is considered with free convection and electrical conduction. A novel transformation is applied for energy equation and then solved by using integral transforms, combinedly, the Fourier and Laplace transformations. The results are shown in form of Mittag-Leffler function. The influence of physical parameters have been presented in graphs and values in tables are discussed in this work. The results reveal that heat transfer increases with increasing values of the volume fraction of nanoparticles, while the velocity of the nanofluid decreases with the increasing values of volume fraction of these particles.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


Author(s):  
Vincent O. S. Olunloyo ◽  
Charles A. Osheku ◽  
Sidikat I. Kuye

Internal fluid flow parameters in conjunction with elastomechanical properties of conveyance systems have significantly modulated flow induced vibrations in pipeline and riser systems. Recent advances on the mechanics of sandwich elastic systems as effective vibration and noise reduction mechanisms have simulated the possibility of replacing traditional steel pipes with sandwich pipes in deepwater environment. The dynamic behaviour and stability of sandwich elastic pipes conveying a non-Newtonian fluid are investigated in this paper. For this problem, a set of generalised non-linear equations governing the vibration of sandwich pipes held together in pressurised environment and conveying a non-Newtonian fluid is presented. By linearizing the governing partial differential equation matching the problem physics, under slight perturbation of the internal fluid velocity and other flow variables closed form analytical results for the system dual natural frequencies and stability under external excitation are computed for field designs and applications. Results show that for a given length of pipe, beyond the critical velocity, instability increases with the velocity of conveyance.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


Sign in / Sign up

Export Citation Format

Share Document