scholarly journals An Efficient Data Mining Technique for Structural Strength Monitoring System

2021 ◽  
Vol 26 (2) ◽  
pp. 237-243
Author(s):  
Moram Vishnu Vardhana Rao ◽  
Aparna Chaparala

A fundamental target of strength monitoring frameworks for different structures is to analyze the condition of the structure and to assess its conceivable danger and furthermore to investigation, identification, and characterization of danger in complex structures is a critical part of auxiliary strength checking. The capacities are browsed as lexicon of time-recurrence movement and scaled variants of a basic Gaussian hypothesis work. This word reference is likewise adjusted to utilize genuine estimated information. Characterization is then accomplished by coordinating the removed damage includes in the time-frequency. In this paper, we utilize our model to assess our information mining approach for the fault checking. The balanced scratch-off and high-pass sifting strategies are consolidated adequately to take care of basic issues in numerical reconciliation signs gathered from sensors are disintegrated into direct blends of very confined Gaussian capacities utilizing the coordinating significance decay calculation. The combination exactness is enhanced and contrasted with former numerical integrators. Rough set analysis uses only internal knowledge and does not rely on prior model assumption as fuzzy set methods or probabilistic models do. In this manuscript a novel hybrid algorithm combining the features of Rough set Support vector machine (Rs-SVM) classified structures and Rough set Artificial Neural Network (Rs-ANN) classified structures are used. At long last the vertices of the structure of different types are connected and analysed by the Hybrid algorithm and furthermore to additionally enhance order execution, the data gathered from numerous sensors is incorporated utilizing a Bayesian sensor combination approach.

Author(s):  
R. Saravana Kumar ◽  
G. Tholkappia Arasu

Large amounts of data about the patients with their medical conditions are presented in the Medical databases. Analyzing all these databases is one of the difficult tasks in the medical environment. In order to warehouse all these databases and to analyze the patient’s condition, we need an efficient data mining technique. In this paper, an efficient data mining technique for warehousing clinical databases using Rough Set Theory (RST) and Fuzzy Logic is proposed. Our proposed methodology contains two phases – (i) Clustering and (ii) Classification. In the first phase, Rough Set Theory is used for clustering. Clustering is one of the data mining techniques for warehousing the heterogeneous data bases. Clustering technique is used to group data that have similar characteristics in the same cluster and also to group the data that have dissimilar characteristics with other clusters. After clustering the data, similar objects will be clustered in one cluster and the dissimilar objects will be clustered under another cluster. The RST can be reduced the complexity. Then in the second phase, these clusters are classified using Fuzzy Logic. Normally, Classification with Fuzzy Logic is generated more number of rules. Since the RST is utilized in our work, the classification using Fuzzy can be done with less amount of complexity. The proposed approach is evaluated using various clinical related databases from heart disease datasets – Cleveland, Switzerland and Hungarian. The performance analysis is based on Sensitivity, Specificity and Accuracy with different cluster numbers. The experimentation results show that our proposed methodology provides better accuracy result.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650039 ◽  
Author(s):  
Francesco Carlo Morabito ◽  
Maurizio Campolo ◽  
Nadia Mammone ◽  
Mario Versaci ◽  
Silvana Franceschetti ◽  
...  

A novel technique of quantitative EEG for differentiating patients with early-stage Creutzfeldt–Jakob disease (CJD) from other forms of rapidly progressive dementia (RPD) is proposed. The discrimination is based on the extraction of suitable features from the time-frequency representation of the EEG signals through continuous wavelet transform (CWT). An average measure of complexity of the EEG signal obtained by permutation entropy (PE) is also included. The dimensionality of the feature space is reduced through a multilayer processing system based on the recently emerged deep learning (DL) concept. The DL processor includes a stacked auto-encoder, trained by unsupervised learning techniques, and a classifier whose parameters are determined in a supervised way by associating the known category labels to the reduced vector of high-level features generated by the previous processing blocks. The supervised learning step is carried out by using either support vector machines (SVM) or multilayer neural networks (MLP-NN). A subset of EEG from patients suffering from Alzheimer’s Disease (AD) and healthy controls (HC) is considered for differentiating CJD patients. When fine-tuning the parameters of the global processing system by a supervised learning procedure, the proposed system is able to achieve an average accuracy of 89%, an average sensitivity of 92%, and an average specificity of 89% in differentiating CJD from RPD. Similar results are obtained for CJD versus AD and CJD versus HC.


Entropy ◽  
2015 ◽  
Vol 18 (1) ◽  
pp. 7 ◽  
Author(s):  
Nantian Huang ◽  
Huaijin Chen ◽  
Shuxin Zhang ◽  
Guowei Cai ◽  
Weiguo Li ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Sign in / Sign up

Export Citation Format

Share Document