scholarly journals Reducing the influence of interference of spacecraft magnetic field on magnetic measurements

2019 ◽  
Vol 18 (2) ◽  
pp. 33-40
Author(s):  
A. M. Beznyakov ◽  
I. S. Guriev ◽  
I. P. Ryzhova

The article presents constructive ways of reducing the influence of magnetic interference from spacecraft, due to its own magnetic fields, on the on-board magnetic measurements, as well as reducing the resulting magnetic moments. Well-known methods of removing magnetometer sensors from the locations of the most powerful sources of magnetic fields of a spacecraft, in particular, using extendable booms, are considered. In addition, methods for reducing the influence of spacecraft self- magnetic fields on the onboard magnetometric navigation support systems using known closed and proposed hemispherical ferromagnetic shields are considered

The paper shows that a planetary magnetic field expressed in the conventional form of a spherical harmonic expanson can be completely represented by the vector sum of fields produced by a set of magnetic dipoles with different magnetic moments, tilted from the planetary spin axis and offset from the planetary centre by different amounts. For convenience, the transformation from multipole systems to dipole systems is restricted to that from multipoles up to octupole to five dipoles. The scalar equipotential transformation analytically results in 24 equations; these can be subsequently solved for the 24 adjustable parameters in dipole systems with the predetermined ‘main dipole’. The numerical comparison of the jovian magnetic field between the jovian O 4 and the five-dipole models reveals a very good agreement with the subtle details. It is obvious that this type of transformation would open up the simplest practical way to simulate planetary magnetic fields with the dipole patterns.


2016 ◽  
Vol 12 (S328) ◽  
pp. 192-197
Author(s):  
C. Villarreal D’Angelo ◽  
M. Schneiter ◽  
A. Esquivel

AbstractWe present a 3D magnetohydrodynamic study of the effect that stellar and planetary magnetic fields have on the calculated Lyα absorption during the planetary transit, employing parameters that resemble the exoplanet HD209458b. We assume a dipolar magnetic field for both the star and the planet, and use the Parker solution to initialize the stellar wind. We also consider the radiative processes and the radiation pressure.We use the numerical MHD code Guacho to run several models varying the values of the planetary and stellar magnetic moments within the range reported in the literature.We found that the presence of magnetic fields influences the escaping neutral planetary material spreading the absorption Lyα line for large stellar magnetic fields.


Author(s):  
Mihye Shin ◽  
Prasheel Lillaney ◽  
Waldo Hinshaw ◽  
Rebecca Fahrig

The key technical innovation needed for close proximity hybrid x-ray/MR (XMR) imaging systems is a new rotating anode x-ray tube motor that can operate in the presence of strong magnetic fields. In order for the new motor design to be optimized between conflicting design requirements, we implemented a numerical model for evaluating the dynamics of the motor. The model predicts the amount of produced torque, rotation speed, and time to accelerate based on the Lorentz force law; the motor is accelerated by the interaction between the magnetic moments of the motor wire loops and an external magnetic field. It also includes an empirical model of bearing friction and electromagnetic force from the magnetic field. Our proposed computational model is validated by experiments using several different magnitudes of external magnetic fields, which averagely shows an agreement within 0.5 % error during acceleration. We are using this model to improve the efficiency and performance of future iterations of the x-ray tube motor.


2008 ◽  
Vol 4 (S259) ◽  
pp. 339-344
Author(s):  
Ansgar Reiners

AbstractDirect measurements of magnetic fields in low-mass stars of spectral class M have become available during the last years. This contribution summarizes the data available on direct magnetic measurements in M dwarfs from Zeeman analysis in integrated and polarized light. Strong magnetic fields at kilo-Gauss strength are found throughout the whole M spectral range, and so far all field M dwarfs of spectral type M6 and later show strong magnetic fields. Zeeman Doppler images from polarized light find weaker fields, which may carry important information on magnetic field generation in partially and fully convective stars.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3216-3219 ◽  
Author(s):  
T. SEKITANI ◽  
N. MIURA ◽  
M. NAITO

We report low-temperature magnetotransport in the normal state of the electron-doped superconductors, Nd 2-x Ce x CuO 4, Pr 2-x Ce x CuO 4, and La 2-x Ce x CuO 4, by suppressing the superconductivity with high magnetic fields. The normal state ρ-T curve shows an up-turn at low temperatures, which has a log T dependence with saturation at lowest temperatures. The up-turn is gradually suppressed with increasing magnetic field, resulting in negative magnetoresistance. We discuss these findings on the basis of the Kondo scattering originating from the magnetic moments of Cu 2+ ions.


1976 ◽  
Vol 71 ◽  
pp. 47-67 ◽  
Author(s):  
V. Bumba

The characteristics of the large-scale distribution of the solar magnetic fields on the basis of a series of solar magnetic synoptic charts covering more than 15 years of observations are given. The major part of our information concerns the morphology and only some results deal with the kinematics of the field distribution. Results of averaged solar magnetic field fluxes and polarity reversal studies as well as of preliminary investigation of the very-low angular resolution magnetic measurements are given. The regular zonal and sectoral distribution of photospheric background fields, the different role or visibility of structures in both polarities is discussed. The reflection of both main types of the longitudinal distribution of large-scale solar background magnetic fields (the 27-day, the 28–29-day successions, the ‘supergiant’ structures) in the interplanetary magnetic field distribution is also considered.


2015 ◽  
Vol 233-234 ◽  
pp. 113-116
Author(s):  
Eleonora A. Kravchenko

209Bi NQR experiments, including analysis of zero-field line shapes, Zeeman-perturbed patterns and zero-field spin-echo envelopes were made to examine magnetic splitting of resonances revealed in the spectra of Main group element compounds of general composition BakBilAmOn (A=Al, В, Ge, Br, Cl). The results were explained assuming the existence in the compounds of ordered internal magnetic fields from 5 to 250 G which notably exceed those of nuclear magnetic moments. A dramatic (8−10-fold) increase in the resonance intensities, instead of broadening and fading, was observed for such compounds upon applying weak (below 500 Oe) external magnetic fields. The effect was shown to relate to the spin dynamics, namely, to the influence of external magnetic field on the nuclear spin-spin relaxation of the compounds with anomalous magnetic properties. In α-Bi2O3, paramagnetism depending on the thermal prehistory of a sample was found using SQUID-technique; magnetoelectric effect linear in magnetic field was also observed for this oxide.


2006 ◽  
Vol 20 (26) ◽  
pp. 1677-1683
Author(s):  
P. LUCACI ◽  
E. CULEA

Magnetic behavior and structural data of the U(T x Al 1-x)2 compounds, where T = Co, Ni and Mn , were reported. Magnetic measurements were performed in the temperature range 4.2–800 K and magnetic fields up to 7 T. The gradual replacement of Al by Co , Ni and Mn ions leads to the decrease of the effective magnetic moments per uranium ion, and of the paramagnetic Curie temperatures in absolute magnitude. This composition evolution of the two magnetic parameters of the U(T x Al 1-x)2 compounds suggests a gradual suppression of the spin fluctuations with replacing the Al ions by T ions.


2005 ◽  
Vol 14 (08) ◽  
pp. 1197-1204 ◽  
Author(s):  
H. WEN ◽  
L. S. KISSLINGER ◽  
WALTER GREINER ◽  
G. MAO

The effects of strong magnetic fields on the inner crust of neutron stars are investigated after taking into account the anomalous magnetic moments of nucleons. The energy spectra and wave functions for protons and neutrons in a uniform magnetic field are provided. The particle spin polarizations and the yields of protons and neutrons are calculated in a free Fermi gas model. Obvious spin polarizations occur when B≥1014 G for protons and B≥1017 G for neutrons, respectively. It is shown that the neutron spin polarization depends solely on the magnetic field strength.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2728-2733 ◽  
Author(s):  
YAOSHUN JIA ◽  
QIANWANG CHEN ◽  
MINGZAI WU

Polycrystalline cobalt nanowires, with average diameter of 80 nm and length about 10 μm, were synthesized in the hydrazine hydrate solution at room temperature under magnetic fields. A seed-mediated growth approach was applied. Magnetic fields induced the growth of nanowires via aligned self-assembly of cobalt nanocrystallites. Magnetic measurements showed that the saturation magnetization (Ms) of the cobalt nanowires synthesized under magnetic field was five times larger than that of the samples prepared without magnetic fields; while the coercivity (Hc) of the sample prepared under magnetic fields was half of that of the sample synthesized without magnetic fields. The reasons for the magnetism changes were discussed.


Sign in / Sign up

Export Citation Format

Share Document