scholarly journals Materials design with polylactic acid-polyethylene glycol blends using 3D printing and for medical applications.

2018 ◽  
Author(s):  
Jeremiah Bauer
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


2021 ◽  
pp. 106324
Author(s):  
Afonso F. João ◽  
Raquel G. Rocha ◽  
Tiago A. Matias ◽  
Eduardo M. Richter ◽  
João Flávio S. Petruci ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2125
Author(s):  
José María Rosales ◽  
Cristina Cejudo ◽  
Lidia Verano ◽  
Lourdes Casas ◽  
Casimiro Mantell ◽  
...  

Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.


2021 ◽  
pp. 50965
Author(s):  
Kankavee Sukthavorn ◽  
Natkritta Phengphon ◽  
Nollapan Nootsuwan ◽  
Pongsakorn Jantaratana ◽  
Chatchai Veranitisagul ◽  
...  

2021 ◽  
Vol 42 (2) ◽  
pp. 106-111
Author(s):  
F. Zivic ◽  
S. Mitrovic ◽  
N. Grujovic ◽  
Z. Jovanovic ◽  
D. Dzunic ◽  
...  

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


2016 ◽  
Vol 116 (01) ◽  
pp. 54-58
Author(s):  
B. Ozpolat ◽  
N. Gunal ◽  
Z. Pekcan ◽  
E. S. Ayva ◽  
O. Bozdogan ◽  
...  

2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


Sign in / Sign up

Export Citation Format

Share Document