scholarly journals Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES method:A case study of Zigetang Co

2011 ◽  
Vol 23 (2) ◽  
pp. 287-294 ◽  
Author(s):  
LEI Guoliang ◽  
◽  
ZHANG Hucai ◽  
CHANG Fengqin ◽  
ZHU Yun ◽  
...  
Keyword(s):  
Icp Oes ◽  
2020 ◽  
Vol 198 ◽  
pp. 03035
Author(s):  
Aiying Cheng ◽  
Junqing Yu ◽  
Chunliang Gao ◽  
Lisha Zhang

Using an X-ray Fluorescence (XRF) core scanner with nondestructive and successive, the chemistry features of lacustrine sediment can be measured directly. This method of XRF core scanner measurements has been widely applied to core sediment analysis but uncertain of the precision and accuracy. Comparison of intensities obtained by XRF core scanning and the concentration measured by conventional X-ray Fluorescence, indicates effects of physical properties varied from different elements on elemental intensities in the lacustrine sediments of a core from Lake Hurleg in the northeastern Tibetan Plateau. Correlation among elements Ti and Sr between the two measurement methods of the XRF and the conventional XRF is high. Using the intensity of Cl as an indicator of water content, the element intensities of Ti and Sr in the core samples is corrected. But the correlation coefficients of Ti and Sr is litter raised. The results show that XRF core scanning is a very useful tool for measuring element concentration in sediments particularly for high intensities elements.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ibrahim Shaik ◽  
S. K. Begum ◽  
P. V. Nagamani ◽  
Narayan Kayet

AbstractThe study demonstrates a methodology for mapping various hematite ore classes based on their reflectance and absorption spectra, using Hyperion satellite imagery. Substantial validation is carried out, using the spectral feature fitting technique, with the field spectra measured over the Bailadila hill range in Chhattisgarh State in India. The results of the study showed a good correlation between the concentration of iron oxide with the depth of the near-infrared absorption feature (R2 = 0.843) and the width of the near-infrared absorption feature (R2 = 0.812) through different empirical models, with a root-mean-square error (RMSE) between < 0.317 and < 0.409. The overall accuracy of the study is 88.2% with a Kappa coefficient value of 0.81. Geochemical analysis and X-ray fluorescence (XRF) of field ore samples are performed to ensure different classes of hematite ore minerals. Results showed a high content of Fe > 60 wt% in most of the hematite ore samples, except banded hematite quartzite (BHQ) (< 47 wt%).


2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


2016 ◽  
Author(s):  
Melissa Spannuth ◽  
Radu Achihai ◽  
Juan Angel ◽  
Spencer Gunn ◽  
Jack Johns ◽  
...  
Keyword(s):  
X Ray ◽  

2015 ◽  
Vol 21 (S6) ◽  
pp. 160-161 ◽  
Author(s):  
A. Maurício ◽  
C. Figueiredo ◽  
M.F. Pereira ◽  
C. Alves ◽  
M. Bergounioux ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Izabela Michalak ◽  
Krzysztof Marycz ◽  
Katarzyna Basińska ◽  
Katarzyna Chojnacka

The biomass ofVaucheria sessilisforms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization.Vaucheria sessilisis a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.).


2017 ◽  
Author(s):  
M. Spannuth ◽  
R. Achihai ◽  
J. A. Gonzalez Campos ◽  
M. A. Husvæg ◽  
J. Johns ◽  
...  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document