scholarly journals Antimicrobial Peptides and Cancer: Potential Use of Antimicrobial-Like Peptides in Chemotherapy

Author(s):  
Mizejewski GJ

Antimicrobial peptides (AMPs) constitute host defense peptides found among insects, fish, amphibians, and mammals including man. The targets of AMPs are gram-negative and gram-positive bacteria, fungi, enveloped viruses, and transformed/cancerous cells. The AMPs are broad spectrum antibiotics which display the propensity to serve as therapeutic agents not only in infectious disease, but also in human cancer. AMPs demonstrate unique properties which include cell membrane penetration, destabilization of biological membranes, ability to form and/or interact with membrane channels, and the capability to modulate host immune responses. The three types of AMPs consists a) naturally-occurring; b) artificially synthesized; and c) cleaved peptide fragments from blood and extracellular matrix proteins. The present treatise presents one such example of an AMP-like peptide derived from a naturally-occurring human protein as a potential candidate for future cancer therapy. The biological activities of human AMP-like peptides as cancer therapeutic agents are reviewed and reported in multiple in vitro and in vivo cancer assays. The possibility of using such human protein-derived peptides as primary and adjunct cancer therapeutic agents is addressed.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Yangpeng Lu ◽  
Yanan Jia ◽  
Zihan Xue ◽  
Nannan Li ◽  
Junyu Liu ◽  
...  

Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


2020 ◽  
Vol 07 (02) ◽  
pp. e58-e67
Author(s):  
Mahamane Haïdara ◽  
Adama Dénou ◽  
Mohamed Haddad ◽  
Aïssata Camara ◽  
Korotoumou Traoré ◽  
...  

AbstractIn Mali, improved traditional medicines [“Médicaments Traditionnels Améliorés”] are prepared from traditionally used medicinal plants. Recently, the Department of Traditional Medicine has identified Terminalia macroptera Guill. & Perr. (Combretaceae) as a potential candidate for an improved traditional medicine. T. macroptera is a West African medicinal plant used in Mali against various health disorders, with more than 30 different indications mentioned by traditional healers, including hepatitis, gonorrhea, fever, pain relief, and various infectious diseases (Helicobacter pylori-associated diseases). To date, validation of most of the biological activities of has been mainly carried out in vitro, except for antimalarial activities. In this study, the potential anti-inflammatory, antipyretic, analgesic, and hepatoprotective properties of T. macroptera were investigated in different murine models. Administration of T. macroptera ethanolic root and leaf extracts in rats significantly reduced pyrexia, pain, inflammation, and hepatic marker enzymes such as alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase in the different murine models used (p<0.05). A phytochemical screening of T. macroptera revealed the presence of tannins, flavonoids, saponins, anthracene derivatives, sterols, triterpenes, and sugars in both leaf and root extracts as the main phytochemical compounds. This was confirmed by qualitative analysis, liquid chromatography coupled with high-resolution mass spectrometry. T. macroptera extracts demonstrated interesting in vivo antipyretic, analgesic, anti-inflammatory, and hepatoprotective activities. Therefore, T. macroptera should be proposed and further evaluated as a potential improved traditional medicine for the treatment of liver-related disorders and for the relief of pain and fever.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4826
Author(s):  
Samar Rezq ◽  
Mona F. Mahmoud ◽  
Assem M. El-Shazly ◽  
Mohamed A. El Raey ◽  
Mansour Sobeh

Natural antioxidants, especially those of plant origins, have shown a plethora of biological activities with substantial economic value, as they can be extracted from agro-wastes and/or under exploited plant species. The perennial hydrophyte, Potamogeton perfoliatus, has been used traditionally to treat several health disorders; however, little is known about its biological and its medicinal effects. Here, we used an integrated in vitro and in vivo framework to examine the potential effect of P. perfoliatus on oxidative stress, nociception, inflammatory models, and brewer’s yeast-induced pyrexia in mice. Our results suggested a consistent in vitro inhibition of three enzymes, namely 5-lipoxygenase, cyclooxygenases 1 and 2 (COX-1 and COX-2), as well as a potent antioxidant effect. These results were confirmed in vivo where the studied extract attenuated carrageenan-induced paw edema, carrageenan-induced leukocyte migration into the peritoneal cavity by 25, 44 and 64% at 200, 400 and 600 mg/kg, p.o., respectively. Moreover, the extract decreased acetic acid-induced vascular permeability by 45% at 600 mg/kg, p.o., and chemical hyperalgesia in mice by 86% by 400 mg/kg, p.o., in acetic acid-induced writhing assay. The extract (400 mg/kg) showed a longer response latency at the 3 h time point (2.5 fold of the control) similar to the nalbuphine, the standard opioid analgesic. Additionally, pronounced antipyretic effects were observed at 600 mg/kg, comparable to paracetamol. Using LC-MS/MS, we identified 15 secondary metabolites that most likely contributed to the obtained biological activities. Altogether, our findings indicate that P. perfoliatus has anti-inflammatory, antioxidant, analgesic and antipyretic effects, thus supporting its traditional use and promoting its valorization as a potential candidate in treating oxidative stress-associated diseases.


2020 ◽  
Vol 26 (7) ◽  
pp. 772-779 ◽  
Author(s):  
Md. Ataur Rahman ◽  
Md Rezanur Rahman ◽  
Toyfiquz Zaman ◽  
Md. Sahab Uddin ◽  
Rokibul Islam ◽  
...  

Background: Naturally-occurring products derived from living organisms have been shown to modulate various pharmacological and biological activities. Natural products protect against various diseases, which could be used for therapeutic assistance. Autophagy, a lysosome-mediated self-digestion pathway, has been implicated in a range of pathophysiological conditions and has recently gained attention for its role in several neurodegenerative diseases. Methods: In this current review, we emphasized the recent progress made in our understanding of the molecular mechanism of autophagy in different cellular and mouse models using naturally-occurring autophagy modulators for the management of several neurodegenerative diseases. Results: Accumulating evidence has revealed that a wide variety of natural compounds such as alkaloids, polyphenols, terpenoids, xanthonoids, flavonoids, lignans, disaccharides, glycolipoproteins, and saponins are involved in the modulation of the autophagy signaling pathway. These natural products have been used to treat various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, neuroblastoma, and glioblastoma. Although a number of synthetic autophagy regulators have been recognized as encouraging neurodegenerative therapeutic candidates, natural autophagy- regulating compounds have been of further interest as potential disease therapeutics, as they cause insignificant side effects. Conclusion: Existing in vitro and in vivo data are promising and highlight that naturally-occurring autophagyregulating compounds play an important role in the prevention and treatment of neurodegenerative disorders.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 831 ◽  
Author(s):  
Ching-Shu Lai ◽  
Chi-Tang Ho ◽  
Min-Hsiung Pan

In recent decades, cancer has been one of the leading causes of death worldwide. Despite advances in understanding the molecular basis of tumorigenesis, diagnosis, and clinical therapies, the discovery and development of effective drugs is an active and vital field in cancer research. Tetrahydrocurcumin is a major curcuminoid metabolite of curcumin, naturally occurring in turmeric. The interest in tetrahydrocurcumin research is increasing because it is superior to curcumin in its solubility in water, chemical stability, bioavailability, and anti-oxidative activity. Many in vitro and in vivo studies have revealed that tetrahydrocurcumin exerts anti-cancer effects through various mechanisms, including modulation of oxidative stress, xenobiotic detoxification, inflammation, proliferation, metastasis, programmed cell death, and immunity. Despite the pharmacological similarities between tetrahydrocurcumin and curcumin, the structure of tetrahydrocurcumin determines its distinct and specific molecular mechanism, thus making it a potential candidate for the prevention and treatment of cancers. However, the utility of tetrahydrocurcumin is yet to be evaluated as only limited pharmacokinetic and oral bioavailability studies have been performed. This review summarizes research on the anti-cancer properties of tetrahydrocurcumin and describes its mechanisms of action.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2850 ◽  
Author(s):  
Anna Lucia Tornesello ◽  
Antonella Borrelli ◽  
Luigi Buonaguro ◽  
Franco Maria Buonaguro ◽  
Maria Lina Tornesello

Antimicrobial peptides (AMPs), or host defense peptides, are small cationic or amphipathic molecules produced by prokaryotic and eukaryotic organisms that play a key role in the innate immune defense against viruses, bacteria and fungi. AMPs have either antimicrobial or anticancer activities. Indeed, cationic AMPs are able to disrupt microbial cell membranes by interacting with negatively charged phospholipids. Moreover, several peptides are capable to trigger cytotoxicity of human cancer cells by binding to negatively charged phosphatidylserine moieties which are selectively exposed on the outer surface of cancer cell plasma membranes. In addition, some AMPs, such as LTX-315, have shown to induce release of tumor antigens and potent damage associated molecular patterns by causing alterations in the intracellular organelles of cancer cells. Given the recognized medical need of novel anticancer drugs, AMPs could represent a potential source of effective therapeutic agents, either alone or in combination with other small molecules, in oncology. In this review we summarize and describe the properties and the mode of action of AMPs as well as the strategies to increase their selectivity toward specific cancer cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Xiang-Yang Chen ◽  
Ru-Feng Wang ◽  
Bin Liu

A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerousin vitroandin vivoexperiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013.


Author(s):  
Sadia Zafar ◽  
Dafne Carolina Alves Quixabeira ◽  
Tatiana Viktorovna Kudling ◽  
Victor Cervera-Carrascon ◽  
Joao Manuel Santos ◽  
...  

Abstract Oncolytic adenoviruses are promising cancer therapeutic agents. Clinical data have shown adenoviruses’ ability to transduce tumors after systemic delivery in human cancer patients, despite antibodies. In the present work, we have focused on the interaction of a chimeric adenovirus Ad5/3 with human lymphocytes and human erythrocytes. Ad5/3 binding with human lymphocytes and erythrocytes was observed to occur in a reversible manner, which allowed viral transduction of tumors, and oncolytic potency of Ad5/3 in vitro and in vivo, with or without neutralizing antibodies. Immunodeficient mice bearing xenograft tumors showed enhanced tumor transduction following systemic administration, when Ad5/3 virus was bound to lymphocytes or erythrocytes (P < 0.05). In conclusion, our findings reveal that chimeric Ad5/3 adenovirus reaches non-injected tumors in the presence of neutralizing antibodies: it occurs through reversible binding to lymphocytes and erythrocytes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Qing Cai ◽  
J Chuck Harrell ◽  
Jennifer Koblinski ◽  
Youngman Oh

Abstract Insulin-like growth factor binding proteins (IGFBPs) are components of the IGF signaling system, which is comprised of ligands IGF-I and IGF-II as well as a family of transmembrane receptors including the IGF-IR and IGF-IIR. IGFBPs bind to both IGF-I and IGF-II with high affinity and are essential for transporting IGFs. This prolongs their half-lives and regulates the availability of free IGFs for interaction with IGF receptors, thereby modulating the effects of IGFs on growth and differentiation. Amongst the six IGFBPs, IGFBP-3, the only IGFBP species regulated by the p53 tumor suppressor, is a well-documented potent tumor suppressor in a variety of human cancer. IGFBP-3 has been further suggested as a potent anti-metastatic factor. Recently, more direct evidence for antitumor effect of IGFBP-3 has been reported in various cancer cells including triple negative breast cancer (TNBC) cells in vitro and in vivo, but the underlying mechanisms of antitumor action of IGFBP-3 are largely unknown. We have identified a new class of cell death receptor called IGFBP-3R, which constitutes a novel cell-death receptor that mediates the anticancer effects of IGFBP-3 in human cancer. IGFBP-3 is significantly reduced whereas IGFBP-3R is broadly expressed in many human cancer types such as breast, prostate, lung and colon cancer. In order to discover novel IGFBP-3/IGFBP-3R antitumor signaling as a therapeutic target, a panel of IGFBP-3R specific monoclonal antibodies (mAbs) have been generated and further identified IGFBP-3R agonistic mAbs acting like IGFBP-3 showing anticancer effects in human cancer cells. Further in vivo studies using a bioluminescent orthotopic TNBC mouse model and Patient Derived Xenograft (PDX) TNBC mouse models demonstrated that administration of IGFBP-3R agonistic mAbs results in significant shrinkage of primary and metastatic tumors up to 75%, accompanying induction of caspase-dependent apoptosis and suppression of tumor-activated NF-κB signaling. More importantly, IGFBP-3R agonistic mAbs have synergistic anticancer effects with therapeutic agents such as carboplatin and Bcl-2 family inhibitors in a variety of human cancer including TNBC, and it was further identified molecular mechanisms involved in its synergy in vitro. These findings clearly demonstrate the IGFBP-3/IGFBP-3R system as a new target and the IGFBP-3R agonists such as IGFBP-3R agonistic mAbs as a new monotherapy and a combination therapy with therapeutic agents for TNBC.


Sign in / Sign up

Export Citation Format

Share Document