scholarly journals Pengaruh Tomat Sambung Pada Intensitas Penyakit Layu Bakteri (Ralstonia solanacearum), Komponen Hasil Produksi, dan Kualitas Buah

2021 ◽  
Vol 26 (3) ◽  
pp. 413-420
Author(s):  
Lisa Navitasari ◽  
Tri Joko ◽  
Rudi Hari Murti ◽  
Triwidodo Arwiyanto

Ralstonia solanacearum (Smith) is one of soil borne pathogens causes bacterial wilt diseases and R. solanacearum is difficult to control because it has a long survival in the soil and have many hosts alternatives. One alternative to control R. solanacearum and to increase productivity is by using grating with combination of resistant varieties of tomato as a rootstock and high production varieties of tomato as a scion. Several studies on grafting to suppress R. solanacearum were reported. However, study on grafting with combination between resistant tomato varieties (Amelia H7996) and high-production tomato varieties with R. solanacearum infestation and without R. solanacearum infestation on the component of yield and fruit quality is limited. The study aims to analyze the effect of grafting with R. solanacearum infestation to the intensity of bacterial wilt disease, component of yield, and fruit quality with R. solanacearum infestation and without R. solanacearum infestation. The result indicated that the intensity of bacterial wilt disease on grafted tomato did not significantly different from resistant rootstock but significantly different from scion.  Infestation of R. solanacearum on grafted tomato can decreased the plant productivity that decreased the component of yield on grafted tomato. R. solanacearum infestation also decreased the fruit quality on diameters and fruit firmness. Nevertheless, R. solanacearum did not affect the Total soluble solid/TSS (°Brix). TSS on grafted tomato indicated that the value is taller than rootstock in the field with R. solanacearum infestation and in the field without R. solanacearum infestation.   Keywords: fruit quality, productivity, Rasltonia solanacearum, tomato grafted

Author(s):  
Jana Víchová ◽  
R. Pokorný

Resistance of determinant tomato varieties to pathogens causing bacterial wilt disease – Clavibacter michiganensis subsp. michiganensis (Cmm) and Ralstonia solanacearum (Rs) – was tested under greenhouse conditions. In tests to Cmm resistance, two inoculation methods were compared (inoculation “to the cut off top” of a plant and inoculation by three punctures into a stalk). The inoculation method “into a stalk” appeared to be most suitable. In both cases of inoculation, the highest level of resistance was found in Minigold variety. The rather high level of resistance was also found in varieties Aneta and Orange. In tests to Rs resistance, the most resistant varieties were Minigold, Aneta and Orange, which are recommended for direct consumption.


2020 ◽  
Vol 14 (1) ◽  
pp. 8-20
Author(s):  
Fery Abdul Choliq ◽  
Mintarto Martosudiro ◽  
Istiqomah Istiqomah ◽  
Muhammad Fanhash Nijami

Tomato is the top priority in the development of horticultural crops. The obstacle which mostly encountered is Ralstonia solanacearum pathogen attack. Bacteriophage can cause bacterial lysis after they they develop themselves inside the bacteria. The specific of the bacteriophage can provide result quickly, accurately, and efficiently so that it can be used as an alternative to control bacterial wilt disease R. solanacearum environmentally friendly. This study aims to find out the effectiveness of bacteriophage to control the bacterial wilt disease R. solanacearum. The testing method are plaque assay, bacteriophage infections test in various dilutions, bacteriophage infection test in a liquid medium, and transmission electron microscopy test. In the greenhouse scale testing using a Completely Randomized Design (CRD) with 6 treatments and 4 replications. Quantitative data were analyzed using analysis of variance 5% error level and followed by least significant different  test level of 5%. The results showed that bacteriophages can infect R. solanacearum. Bacteriophage can infect bacteria R. solanacearum indicated by the appearance of plaques in NA media, the declining value of absorbance spectophotometer, and can lyse bacterial cells from dilutions 10-1 to 10-9. The morphology of bacteriophages that infect R. solanacearum have hexagonal head structure and it have which is with a size of 200 nm. In the greenhouse scale showed that the symptoms of R. solanacearum appear at 29 days after inoculation. Application of bacteriophages can control R. solanacearum with lower percentage than the control treatment.


2019 ◽  
Vol 2 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Rachmad Saputra ◽  
Triwidodo Arwiyanto ◽  
Arif Wibowo

Streptomyces sp. bacteria have the potential to produce antibiotic compounds, which are one of the mechanisms that are widely used in biological control. However, in general, biological control mechanisms also occur through competition, cell wall degradation and induced resistance. This study was aimed to determine the physiological, biochemical and molecular characteristics of two isolates of Streptomyces sp. (S-4 and S16 isolates) isolated from the tomatoes roots, and to find out their ability to control Ralstonia solanacearum, which causes bacterial wilt disease on a wide range of hosts. The results showed both Streptomyces sp. isolates had several different physiological and biochemical characteristics and had a different ability to inhibit R. solanacearum in vitro. Streptomyces sp. S-16 isolate had a high similarity with Streptomyces diastaticus subsp. ardesiacus strain NRRL B-1773T based on the molecular identification results. Further research needs to be done to see the potential inhibition of the two Streptomyces isolates in inhibiting the development of bacterial wilt disease in tomato plants caused by R. solanacearum.


Plant Science ◽  
2019 ◽  
Vol 280 ◽  
pp. 197-205 ◽  
Author(s):  
Tâmara P. Morais ◽  
Paulo A. Zaini ◽  
Sandeep Chakraborty ◽  
Hossein Gouran ◽  
Camila P. Carvalho ◽  
...  

2010 ◽  
Vol 23 (8) ◽  
pp. 1042-1052 ◽  
Author(s):  
Jennifer Colburn-Clifford ◽  
Caitilyn Allen

Ralstonia solanacearum race 3 biovar 2 (R3bv2) is an economically important soilborne plant pathogen that causes bacterial wilt disease by infecting host plant roots and colonizing the xylem vessels. Little is known about R3bv2 behavior in the host rhizosphere and early in bacterial wilt pathogenesis. To explore this part of the disease cycle, we used a novel taxis-based promoter-trapping strategy to identify pathogen genes induced in the plant rhizosphere. This screen identified several rex (root exudate expressed) genes whose promoters were upregulated in the presence of tomato root exudates. One rex gene encodes an assembly protein for a high affinity cbb3-type cytochrome c oxidase (cbb3-cco) that enables respiration in low-oxygen conditions in other bacteria. R3bv2 cbb3-cco gene expression increased under low-oxygen conditions, and a cbb3-cco mutant strain grew more slowly in a microaerobic environment (0.5% O2). Although the cco mutant could still wilt tomato plants, symptom onset was significantly delayed relative to the wild-type parent strain. Further, the cco mutant did not colonize host stems or adhere to roots as effectively as wild type. These results suggest that R3bv2 encounters low-oxygen environments during its interactions with host plants and that the pathogen depends on this oxidase to help it succeed in planta.


2013 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Jonathan M. Jacobs ◽  
Caitilyn Allen

The bacterial wilt pathogen Ralstonia solanacearum causes major agricultural losses on many crop hosts worldwide. Resistance breeding is the best way to control bacterial wilt disease, but the biological basis for bacterial wilt resistance is unknown. We found that R. solanacearum uses an AvrE-family, Type III-secreted effector called PopS to overcome plant defenses and cause disease on tomato. Orthologs of PopS are widely conserved across distinct classes of plant pathogenic bacteria and could provide novel, durable targets for resistance. Accepted for publication 25 September 2013. Published 25 November 2013.


Sign in / Sign up

Export Citation Format

Share Document