CO2 emission estimates From fossil fuel combustion (thousand metric tons of carbon dioxide) and per capita

2021 ◽  
Vol 32 (2) ◽  
pp. 47
Author(s):  
Ahmed S. Hassan ◽  
Jasim H. Kadhum

Carbon dioxide intensity (CI) refers to carbon dioxide emissions from fossil fuel combustion that mainly used for electricity, heat, transport, and other life requirements. The objective of this paper is better to understand CI as an indicator of Global Warming, and compared its behavior with two other variables (total CO2 emissions, and CO2 emissions per capita). The main data sources an available and activity data from Carbon Dioxide Information Analysis Center (CDIAC). Three annual variables used in this study; CI, total CO2 emissions, and CO2 per capita for fossil fuel emissions during long time series from (1971 to 2018).The results of CI shown that the highest value found out at the beginning of the study in 1971 was (7.188 kg/kg oil equivalent), and then decreased till reach to lower value was (1.707 kg/kg oil equivalent) in 1997, after that slowly increased in the last decade near to (3.63 kg/kg oil equivalent). The total CO2 emissions were strongly related to oil prediction. The highest value for total CO2 emissions was (188.1 Mt) in 2018, with Iraqi oil production more than (4.78 million barrel/day). The total CO2 emissions increased by (65. 176%) during the study period.  The total CO2 emissions were inversely proportional to CI.  The level of CO2 emission per capita rate fluctuated around average (3.49 metric tons per capita); the maximum rate was (4.99 metric tons per capita) in 2013.         


Author(s):  
Kelly M. Twomey ◽  
Michael E. Webber

The United States uses approximately 5% of its primary energy and 6% of its electricity to pump, convey, treat, distribute, heat, and recondition water in the US public water supply. Allocating this energy towards water has contributed to a national public water distribution system that is considered among the best in the world, providing its users with a clean and reliable water supply. This water supply, treated to stringent water standards defined by the Environmental Protection Agency’s Safe Drinking Water Act, has been critical to the health and livelihood of United States’ citizens. However, this energy-expenditure comes at an environmental cost, since the majority of water-related energy is derived from burning fossil fuels. Fossil-fuel combustion emits carbon-dioxide, a greenhouse gas that has become of concern in recent years because of its connection to anthropogenic climate change. The amount of carbon-dioxide that is emitted from fossil-fuel combustion is principally a function of the quantity and type of fuel that is burned for energy. This first-order analysis quantifying national water-related carbon dioxide emissions is the second in a series of several analyses by the authors, quantifying the energy and greenhouse emissions embedded in the US public water supply. Results indicate that water withdrawal, conveyance, treatment, distribution, end-use preparation, and wastewater treatment produces approximately 301 million metric tonnes of CO2 emissions annually. This quantity is 5.1% of total US CO2 emissions in 2009, which is approximately equal to emissions from the gasoline consumed by one-quarter of the US passenger fleet in the same year. Considering that the emissions associated with water for industrial, municipal and self-supplied sectors (such as agriculture) were not included in this analysis, the actual quantity of carbon emissions released as a result of water-related activities is likely to be higher. Consequently, identifying efficiency measures and conservation schemes to reduce the amount of water-related energy consumed in the US might be significant in achieving future greenhouse gas emission reduction goals.


2012 ◽  
Vol 9 (1) ◽  
pp. 1299-1376 ◽  
Author(s):  
R. J. Andres ◽  
T. A. Boden ◽  
F.-M. Bréon ◽  
P. Ciais ◽  
S. Davis ◽  
...  

Abstract. This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50%. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.


2005 ◽  
Vol 885 ◽  
Author(s):  
Kristy Eileen Ross ◽  
Stuart J. Piketh

ABSTRACTEmissions from fossil fuel combustion alter the composition of the atmosphere and have been touted as a major cause of climate change. The amount of carbon dioxide in the atmosphere, for example, has increased by more than 30% since pre-industrial times. Average global surface temperature has increased by approximately 0.6 ± 0.2°C since the late 19th Century, and surface temperature records indicate that the 1990s are likely to have been the warmest decade of the last millennium. The anthropogenically-induced warming is superimposed on natural climatic variability. Proxy records show a regular oscillation, on a roughly 100,000-year cycle, between glacials and interglacials. Superimposed on these long-term oscillations are shorter scale variations. It is thought that changes in the seasonality and location of radiation from the Sun trigger the onset or end of glaciation, and the change is then amplified by feedbacks in the earth-atmosphere system. A firm link between atmospheric composition and temperature has been established from ice core records spanning the last 420,000 years, which show that changes in time of global temperature and atmospheric concentrations of carbon dioxide and methane are tightly coupled. Global average surface temperature is projected to increase by between 1.4 and 5.8°C by 2100, with the warming being greatest over land and polar regions. Precipitation is predicted to increase in the tropical, mid- and high-latitude regions, but to decrease in the subtropical regions. Alternative energy technologies such as hydrogen fuel cell vehicles will lower greenhouse gas emissions and reduce climate problems and costs.


2013 ◽  
Vol 13 (10) ◽  
pp. 5189-5203 ◽  
Author(s):  
R. Wang ◽  
S. Tao ◽  
P. Ciais ◽  
H. Z. Shen ◽  
Y. Huang ◽  
...  

Abstract. High-resolution mapping of fuel combustion and CO2 emission provides valuable information for modeling pollutant transport, developing mitigation policy, and for inverse modeling of CO2 fluxes. Previous global emission maps included only few fuel types, and emissions were estimated on a grid by distributing national fuel data on an equal per capita basis, using population density maps. This process distorts the geographical distribution of emissions within countries. In this study, a sub-national disaggregation method (SDM) of fuel data is applied to establish a global 0.1° × 0.1° geo-referenced inventory of fuel combustion (PKU-FUEL) and corresponding CO2 emissions (PKU-CO2) based upon 64 fuel sub-types for the year 2007. Uncertainties of the emission maps are evaluated using a Monte Carlo method. It is estimated that CO2 emission from combustion sources including fossil fuel, biomass, and solid wastes in 2007 was 11.2 Pg C yr−1 (9.1 Pg C yr−1 and 13.3 Pg C yr−1 as 5th and 95th percentiles). Of this, emission from fossil fuel combustion is 7.83 Pg C yr−1, which is very close to the estimate of the International Energy Agency (7.87 Pg C yr−1). By replacing national data disaggregation with sub-national data in this study, the average 95th minus 5th percentile ranges of CO2 emission for all grid points can be reduced from 417 to 68.2 Mg km−2 yr−1. The spread is reduced because the uneven distribution of per capita fuel consumptions within countries is better taken into account by using sub-national fuel consumption data directly. Significant difference in per capita CO2 emissions between urban and rural areas was found in developing countries (2.08 vs. 0.598 Mg C/(cap. × yr)), but not in developed countries (3.55 vs. 3.41 Mg C/(cap. × yr)). This implies that rapid urbanization of developing countries is very likely to drive up their emissions in the future.


2012 ◽  
Vol 9 (5) ◽  
pp. 1845-1871 ◽  
Author(s):  
R. J. Andres ◽  
T. A. Boden ◽  
F.-M. Bréon ◽  
P. Ciais ◽  
S. Davis ◽  
...  

Abstract. This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.


2017 ◽  
Vol 24 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Artur Pawłowski ◽  
Małgorzata Pawłowska ◽  
Lucjan Pawłowski

Abstract Carbon dioxide fluxes between ecosystems of the Earth are presented. It was shown that intensifying its absorption of terrestrial ecosystems by 3.2% would prove sufficient to neutralize carbon dioxide emissions from the combustion of fossil fuels and cement production. It was shown that Polish forests absorb 84.6 million tons of CO2/year, that is 26% of emissions from fossil fuel combustion and cement production, while agricultural crops absorb 103 million tons of CO2/year. Total carbon dioxide sequestration by forests and agricultural crops amounts to 187.5 million tons of CO2/year, which is tantamount to 59% of emissions from fossil fuel combustion and cement production. Forestation of marginal soils would further increase carbon dioxide absorption in Poland by 20.6 million tons of CO2/year. Moreover, if plants were sown in order to produce green manure - instead of leaving soil fallow - sequestration could still be boosted by another 6.2 million tons of CO2/year.


Climate ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 61
Author(s):  
John P. O’Connor

In this work, a semi-empirical relationship of carbon dioxide emissions with atmospheric CO2 concentrations has been developed that is capable of closely replicating observations from 1751 to 2018. The analysis was completed using data from fossil-fuel-based and land-use change based CO2 emissions, both singly and together. Evaluation of emissions data from 1750 to 1890 yields a linear CO2 concentration component that may be attributed to the net flux from land-use changes combined with a rapidly varying component of the terrestrial sink. This linear component is then coupled across the full-time period with a CO2 concentration calculation using fossil-fuel combustion/cement production emissions with a single, fixed fossil-fuel combustion airborne fraction [AFFF] value that is determined by the ocean sink coupled with the remaining slowly varying component of the land sink. The analysis of the data shows that AFFF has remained constant at 51.3% over the past 268 years. However, considering the broad range of variables including emission and sink processes influencing the climate, it may not be expected that a single value for AFFF would accurately reproduce the measured changes in CO2 concentrations during the industrial era.


Sign in / Sign up

Export Citation Format

Share Document