scholarly journals INFLUENCE OF FEATURES OF THE ELECTRIC FIELD IN THE DIAPHRAGM SYSTEM ON THE TRANSPORTATION OF THE FLOW OF CHARGED PARTICLES AT ATMOSPHERIC PRESSURE

2021 ◽  
Vol 31 (3) ◽  
pp. 3-39
Author(s):  
T. V. Pomozov ◽  
◽  
N. V. Krasnov

The results of numerical simulation of the ion-optical scheme of ion transport at atmospheric pressure are presented. The possibility of efficient transport of ions in the system under consideration with an increase in the local curvature of the equipotential lines of the electrostatic field in the vicinity of the nozzle by shaping (changing the shape) of this electrode is shown. Shaping the nozzle allows to increase the value of Iсопло by approximately 1.6 times. Taking into account the gas-dynamic effect on the transport of the ion beam through the nozzle makes it possible to obtain the values of the transmission by 70% higher.

Author(s):  
U. Kerst ◽  
P. Sadewater ◽  
R. Schlangen ◽  
C. Boit ◽  
R. Leihkauf ◽  
...  

Abstract The feasibility of low-ohmic FIB contacts to silicon with a localized silicidation was presented at ISTFA 2004 [1]. We have systematically explored options in contacting diffusions with FIB metal depositions directly. A demonstration of a 200nm x 200nm contact on source/drain diffusion level is given. The remaining article focuses on the properties of FIB deposited contacts on differently doped n-type Silicon. After the ion beam assisted platinum deposition a silicide was formed using a forming current in two configurations. The electrical properties of the contacts are compared to furnace anneal standards. Parameters of Schottky-barriers and thermal effects of the formation current are studied with numerical simulation. TEM images and material analysis of the low ohmic contacts show a Pt-silicide formed on a silicon surface with no visible defects. The findings indicate which process parameters need a more detailed investigation in order to establish values for a practical process.


2021 ◽  
Vol 11 (11) ◽  
pp. 4990
Author(s):  
Boris Benderskiy ◽  
Peter Frankovský ◽  
Alena Chernova

This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for spatial objects is based on the solution conjugate problem of heat exchange by the control volume method in the open integrated platform for numerical simulation of continuum mechanics problems (openFoam). The calculation results for gas-dynamic and thermal processes in the power plant with a four-nozzle cover are presented. The analysis of gas-dynamic parameters and thermal flows near the nozzle cover, depending on the canal geometry, is given. The topological features of the flow structure and thermophysical parameters near the nozzle cap were studied. For the first time, the transformation of topological features of the flow structure in the pre-nozzle volume at changes in the mass channel’s geometry is revealed, described, and analyzed. The dependence of the Nusselt number in the central point of stagnation on the time of the power plants operation is revealed.


2003 ◽  
Vol 37 (5) ◽  
pp. 297-301
Author(s):  
A. P. Tishin ◽  
I. T. Goryunov ◽  
Yu. L. Gus'kov ◽  
D. A. Barshak ◽  
G. V. Presnov ◽  
...  

LASER THERAPY ◽  
2013 ◽  
Vol 22 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Shigeo Kawata ◽  
Takeshi Izumiyama ◽  
Toshihiro Nagashima ◽  
Masahiro Takano ◽  
Daisuke Barada ◽  
...  

2020 ◽  
Vol 90 (5) ◽  
pp. 733
Author(s):  
К.Н. Волков ◽  
В.Н. Емельянов ◽  
А.В. Ефремов ◽  
А.И. Цветков

In high-pressure gas-jet emitters, the source of sound energy is kinetic energy of gas jet at supercritical pressure ratios between the working pressure and the atmospheric pressure. Under certain conditions, interaction of a supersonic jet with the resonator is accompanied by powerful self-excited oscillating process with the generation of acoustic waves into the environment and cavity resonator. A model of a self-excited oscillating process arising from the interaction of non-isobaric jet with semi-closed cylindrical cavities, allowing to distinguish typical elements of gas-dynamic structure of the forming flow, is considered. The physical pattern of the flow in the cavity of gas-jet emitter is discussed, and a study of the dependence of the characteristics of the self-excited oscillating process on the gas-dynamic and geometric parameters is performed.


Sign in / Sign up

Export Citation Format

Share Document