Windowless gas dynamic ion beam cooler and buncher

Author(s):  
Victor Varentsov
Keyword(s):  
Ion Beam ◽  
2021 ◽  
Vol 31 (3) ◽  
pp. 3-39
Author(s):  
T. V. Pomozov ◽  
◽  
N. V. Krasnov

The results of numerical simulation of the ion-optical scheme of ion transport at atmospheric pressure are presented. The possibility of efficient transport of ions in the system under consideration with an increase in the local curvature of the equipotential lines of the electrostatic field in the vicinity of the nozzle by shaping (changing the shape) of this electrode is shown. Shaping the nozzle allows to increase the value of Iсопло by approximately 1.6 times. Taking into account the gas-dynamic effect on the transport of the ion beam through the nozzle makes it possible to obtain the values of the transmission by 70% higher.


2006 ◽  
Vol 77 (3) ◽  
pp. 03A341 ◽  
Author(s):  
A. Sidorov ◽  
A. Bokhanov ◽  
I. Izotov ◽  
S. Razin ◽  
V. Skalyga ◽  
...  

2008 ◽  
Vol 79 (2) ◽  
pp. 02A317 ◽  
Author(s):  
A. Sidorov ◽  
M. Dorf ◽  
V. Zorin ◽  
A. Bokhanov ◽  
I. Izotov ◽  
...  

Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
M. T. Tinker ◽  
L. W. Hobbs

There is considerable technological interest in oxidation of nickel because of the importance of nickel-base superalloys in high-temperature oxidizing environments. NiO scales on nickel grow classically, by outward diffusion of nickel through the scale, and are among the most studied of oxidation systems. We report here the first extensive characterization by transmission electron microscopy of nickel oxide scales formed on bulk nickel substrates and sectioned both parallel and transversely to the Ni/NiO interface.Electrochemically-polished nickel sheet of 99.995% purity was oxidized at 1273 K in 0.1 MPa oxygen partial pressure for times between 5 s and 25 h. Parallel sections were produced using a combination of electropolishing of the nickel substrate and ion-beam thinning of the scale to any desired depth in the scale. Transverse sections were prepared by encasing stacked strips of oxidized nickel sheet in epoxy resin, sectioning transversely and ion-beam thinning until thin area spanning one or more interfaces was obtained.


Author(s):  
N. Qiu ◽  
J. E. Wittig

PtCo hard magnets have specialized applications owing to their relatively high coercivity combined with corrosion resistance and ductility. Increased intrinsic coercivity has been recently obtained by rapid solidification processing of PtCo alloys containing boron. After rapid solidification by double anvil splat quenching and subsequent annealing for 30 minutes at 650°C, an alloy with composition Pt42Co45B13 (at.%) exhibited intrinsic coercivity up to 14kOe. This represents a significant improvement compared to the average coercivities in conventional binary PtCo alloys of 5 to 8 kOe.Rapidly solidified specimens of Pt42Co45B13 (at.%) were annealed at 650°C and 800°C for 30 minutes. The magnetic behavior was characterized by measuring the coercive force (Hc). Samples for TEM analysis were mechanically thinned to 100 μm, dimpled to about 30 nm, and ion milled to electron transparency in a Gatan Duomill at 5 kV and 1 mA gun current. The incident ion beam angle was set at 15° and the samples were liquid nitrogen cooled during milling. These samples were analyzed with a Philips CM20T TEM/STEM operated at 200 kV.


Sign in / Sign up

Export Citation Format

Share Document