Vitamin D in the skin physiology and pathology.

2016 ◽  
Vol 63 (1) ◽  
Author(s):  
Anna Piotrowska ◽  
Justyna Wierzbicka ◽  
Michał A Żmijewski

Vitamin D plays important, pleiotropic role in the maintenance of global homeostasis. Its influence goes far beyond the regulation of calcium and phosphorus balance, as diverse activities of vitamin D and its natural metabolites assure proper functioning of major human organs, including skin. Recently, we reviewed the current understanding of vitamin D impact on human health from historical perspective (Wierzbicka et al. (2014) The renaissance of vitamin D. Acta Biochim Pol 61: 679-686). This article focuses on its functions in the skin. The skin and its appendages, creates a platform connecting and protecting internal organs against, usually harmful, external environment. It uppermost layer - epidermis in order to maintain a protective barrier undergoes a constant exchange of cornified keratinocytes layer. Its disturbance leads to development of serious skin disorders including psoriasis, vitiligo, atopic dermatitis and skin cancer. All of those dermatopathologies have a huge impact on modern societies, affecting not only the physical, but also mental state of patients as well as their social status. Furthermore, multiple human systemic diseases (autoimmune, blood and digestive diseases) have skin manifestation, thus "condition of the skin" often reflects the condition and pathological changes within the internal organs. In humans, the skin is the natural source of vitamin D, which is produced locally from 7-dehydrocholesterol in photoreaction induced by ultraviolet B (UVB) radiation from the sun. It is also well established, that the process of proliferation and differentiation of keratinocytes is tightly regulated by calcium and the active form of vitamin D (1,25(OH)2D3). Thus, the skin physiology is inseparably connected with vitamin D production and activity. Unfortunately, UVB, which is required for vitamin D production, is also known as the main cause of a skin cancer, including melanoma. Here, we are going to review benefits of vitamin D and its analogues in the maintenance of epidermal barrier and its potential use in the treatment of common skin diseases.

1996 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
John H. Epstein

Recent evidence indicates that there has been a reduction in the stratospheric ozone over the northern hemisphere, as well as the Antarctic and Arctic latitudes. This has resulted in an increased penetration of ultraviolet B (UVB) at least as measured at Toronto, Canada, since 1989. If no precautions are observed by the human population, this could eventually result in an increase in the skin cancer incidence. This would be especially true for the most common cancers, that is, the nonmelanoma skin cancers (NMSCs), basal cell carcinomas and squamous cell carcinomas. In addition it has been predicted that the third most common skin cancer, the malignant melanoma, would also increase in incidence. However, the relationship between UVB radiation and melanoma formation is much less clear than it is for NMSCs. Clinically people with a loss or lack of melanin protection such as those with occulocutaneous albinism and vitiligo, or much more commonly, people with light skin, eyes, and hair would be at greatest risk. Also increased UVB penetration could exacerbate certain infections such as herpes simplex. People with UVB-sensitive diseases including solar urticaria, polymorphous light eruptions, lupus erythematosus, dermatomyositis, pemphigus, pemphigoid, Darier's disease, familial benign chronic pemphigus, and certain recessive degenerative genodermatoses would also be potentially more vulnerable.Key words: ozone, ultraviolet B (UVB), skin cancer, photosensitive skin diseases.


2020 ◽  
Author(s):  
Rahul Kalippurayil Moozhipurath ◽  
Lennart Kraft ◽  
Bernd Skiera

Abstract Background. Prior studies indicate the protective role of Ultraviolet-B (UVB) radiation in human health, mediated by vitamin D synthesis. In this observational study, we empirically outline a negative association of UVB radiation as measured by ultraviolet index (UVI) with the number of COVID-19 deaths.Methods. We apply a fixed-effect log-linear regression model to a panel dataset of 152 countries over 108 days (n=6524). We use the cumulative number of COVID-19 deaths and case-fatality rate (CFR) as the main dependent variables and isolate UVI effect from potential confounding factors.Findings. After controlling for time-constant and time-varying factors, we find that a permanent unit increase in UVI is associated with a 1.2 percentage points decline in daily growth rates of cumulative COVID-19 deaths [p < 0.01] and a 1.0 percentage points decline in the CFR daily growth rate [p < 0.05]. These results represent a significant percentage reduction in terms of daily growth rates of cumulative COVID-19 deaths (-11.88%) and CFR (-38.46%).Interpretation. We find a significant negative association between UVI and COVID-19 deaths, indicating evidence of the protective role of UVB in mitigating COVID-19 deaths. If confirmed via clinical studies, then the possibility of mitigating COVID-19 deaths via sensible sunlight exposure or vitamin D intervention will be very attractive.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rahul Kalippurayil Moozhipurath ◽  
Lennart Kraft ◽  
Bernd Skiera

Abstract Prior studies indicate the protective role of Ultraviolet-B (UVB) radiation in human health, mediated by vitamin D synthesis. In this observational study, we empirically outline a negative association of UVB radiation as measured by ultraviolet index (UVI) with the number of COVID-19 deaths. We apply a fixed-effect log-linear regression model to a panel dataset of 152 countries over 108 days (n = 6524). We use the cumulative number of COVID-19 deaths and case-fatality rate (CFR) as the main dependent variables and isolate the UVI effect from potential confounding factors. After controlling for time-constant and time-varying factors, we find that a permanent unit increase in UVI is associated with a 1.2 percentage points decline in daily growth rates of cumulative COVID-19 deaths [p < 0.01] and a 1.0 percentage points decline in the CFR daily growth rate [p < 0.05]. These results represent a significant percentage reduction in terms of daily growth rates of cumulative COVID-19 deaths (− 12%) and CFR (− 38%). We find a significant negative association between UVI and COVID-19 deaths, indicating evidence of the protective role of UVB in mitigating COVID-19 deaths. If confirmed via clinical studies, then the possibility of mitigating COVID-19 deaths via sensible sunlight exposure or vitamin D intervention would be very attractive.


Author(s):  
Cátia Irene Duarte Valente ◽  
Elaine Cristina Silva dos Reis ◽  
Idiberto José Zotarelli Filho ◽  
Durval Ribas Filho

One of the main factors for the increase in the incidence of skin cancer in Brazil today is exposure to solar radiation. The main means of prevention is through photoprotection, together with factors such as solar incidence in the region, the habits of the population, and the skin phototype. The relationship between photoprotection and vitamin D is fundamental for patient orientation since photoprotection is a practice widely used today for all people, both those who have already suffered some type of skin cancer and others who are at greater risk or not. to develop it. On the other hand, some studies suggest that the photoprotection of the skin would jeopardize the development of Vitamin D, which may cause its deficiency, and may subject patients to future changes in bone mineralization, increasing the risk of bone deformities and fractures since the vitamin D is essential for bone tissue and its production is stimulated by skin exposure to ultraviolet B radiation (UVB), with natural sources limited through the diet. The discussion about the relationship between photoprotection and vitamin D is essential to establish the right conditions for each patient.


2021 ◽  
Vol 61 (1) ◽  
pp. 55-72
Author(s):  
Maša Hribar ◽  
Evgen Benedik ◽  
Matej Gregorič ◽  
Urška Blaznik ◽  
Andreja Kukec ◽  
...  

Abstract Aim Vitamin D (VitD) is involved in calcium and phosphate homeostasis, bone health, and normal functioning of the immune system. VitD status is monitored using serum 25-hydroxy-vitamin D (25(OH)D) as a biomarker. Serum 25(OH)D concentrations below 30 nmol/L indicate VitD deficiency and below 50 nmol/L indicate insufficiency. VitD can be synthesised endogenously in human skin when exposed to ultraviolet B (UVB) radiation. In the absence of sufficient UVB-light exposure, VitD intake becomes the main source of VitD, with a recommended daily intake of 20 μg. The aim of this study was to conduct a review and meta-analysis on the abovementioned topics, focusing on scientific studies in various Slovenian populations. Methods We conducted a systematic review and meta-analysis of published scientific papers, academic theses, or conference contributions reporting serum 25(OH)D status and VitD intake across various Slovenian populations. A search was carried out using Web of Science, Scopus, Medline, and the Slovenian library database. Results We identified 43 pertinent studies that addressed 25(OH)D status and 16 that addressed VitD intake. Serum 25(OH)D status was generally low across all populations, and notable seasonal variability was observed. VitD intakes were below 5 μg in all studies. Conclusions A general observation is that various population groups across Slovenia are at high risk of vitamin D insufficiency and deficiency, particularly during wintertime. Regarding vitamin D intake, all included studies reported daily intakes below the recommended level. We also identified key research gaps that need to be addressed to support further public health decision-making.


Author(s):  
Patrick J. McCullough ◽  
Jeffrey Amend ◽  
William P. McCullough ◽  
Steven J. Repas ◽  
Jeffrey B. Travers ◽  
...  

Abstract: A primary action of vitamin D is regulation of gene transcription. Many cell types possess genes that make antimicrobial peptides (AMPS) (endogenous antibiotics), recently discovered to be regulated by vitamin D. Two examples are cathelicidin and beta defensins, both bioactive against many different bacteria, fungi, mycobacteria, parasites and viruses. The signal transduction pathway is triggered by sensing microorganisms via cell surface receptors, causing intracellular production of calcitriol (1,25(OH)2D) and vitamin D receptors, leading to upregulation of AMP production. Serum 25(OH)D concentrations required to sustain adequate AMP production to eradicate infections are unknown. Vitamin D3 is photosynthesized in skin in amounts ranging from 10,000 (250 mcg) to 25,000 (625 mcg) International Units (IU) from 7-dehydrocholesterol after whole-body exposure to one minimal erythemal dose (MED) of ultraviolet B (UVB) radiation, and is impacted by many factors including geographic localities, seasonal changes and skin pigmentation. We and others have reported extended daily oral dosing with these amounts of vitamin D3 safe. We routinely observe serum 25(OH)D concentrations below 20ng/ml on new admissions, which have been reported insufficient to sustain AMP production. In contrast serum 25(OH)D concentrations above 100ng/ml have been reported after serial UVB treatments for psoriasis. Little vitamin D naturally occurs in food, and insufficient sun exposure may be causing worldwide deficiency. We review evidence suggesting that higher daily intakes of vitamin D3 than the currently recommended 600 (15 mcg) IU/day may be necessary to sustain AMP production in the face of an overwhelming infection, particularly in non-Hispanic blacks, a high risk population suffering the worst outcomes from COVID-19. We propose that increased vitamin D supplementation could provide a safe and cost-effective way to protect all populations from infections, in particular those from pandemic COVID-19.


Author(s):  
Rahul Kalippurayil Moozhipurath ◽  
Lennart Kraft ◽  
Bernd Skiera

AbstractBackgroundResearch is ongoing to identify an effective way to prevent or treat COVID-19, but thus far these efforts have not yet identified a possible solution. Prior studies indicate the protective role of Ultraviolet-B (UVB) radiation in human health, mediated by vitamin D synthesis. In this study, we empirically outline a negative association of UVB radiation as measured by ultraviolet index (UVI) with the number of deaths attributed to COVID-19 (COVID-19 deaths).MethodsWe carry out an observational study, applying a fixed-effect log-linear regression model to a panel dataset of 64 countries over a period of 78 days (n=4992). We use the cumulative number of COVID-19 deaths and case-fatality rate (CFR) as the main dependent variables to test our hypothesis and isolate UVI effect from potential confounding factors such as underlying time trends, country-specific time-constant and time-varying factors such as weather.FindingsAfter controlling for time-constant and time-varying factors, we find that a permanent unit increase in UVI is associated with a 2.2 percentage points decline in daily growth rates of cumulative COVID-19 deaths [p < 0.01] as well as a 1.9 percentage points decline in the daily growth rates of CFR [p < 0.05]. These results represent a significant percentage reduction in terms of the daily growth rates of cumulative COVID-19 deaths (−22.92%) and CFR (−73.08%). Our results are consistent across different model specifications.InterpretationWe find a significant negative association between UVI and COVID-19 deaths, indicating evidence of the protective role of UVB in mitigating COVID-19 deaths. If confirmed via clinical studies, then the possibility of mitigating COVID-19 deaths via sensible sunlight exposure or vitamin D intervention will be very attractive because it is cost-effective and widely available.


Reports ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Ewa Marcinkowska

Vitamin D is synthesized in the skin from 7-dehydrocholesterol subsequently to exposure to UVB radiation or is absorbed from the diet. Vitamin D undergoes enzymatic conversion to its active form, 1,25-dihydroxyvitamin D (1,25D), a ligand to the nuclear vitamin D receptor (VDR), which activates target gene expression. The best-known role of 1,25D is to maintain healthy bones by increasing the intestinal absorption and renal reuptake of calcium. Besides bone maintenance, 1,25D has many other functions, such as the inhibition of cell proliferation, induction of cell differentiation, augmentation of innate immune functions, and reduction of inflammation. Significant amounts of data regarding the role of vitamin D, its metabolism and VDR have been provided by research performed using mice. Despite the fact that humans and mice share many similarities in their genomes, anatomy and physiology, there are also differences between these species. In particular, there are differences in composition and regulation of the VDR gene and its expression, which is discussed in this article.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A272-A273
Author(s):  
Koichiro Yamamoto ◽  
Manami Fujita ◽  
Hiroyuki Honda ◽  
Yoshihisa Hanayama ◽  
Kazuki Tokumasu ◽  
...  

Abstract Vitamin D is obtained in the body by food intake or by production from 7-dehydrocholesterol by exposure of the skin to ultraviolet B radiation. It is first metabolized in the liver to 25-hydroxyvitamin D (25D), which is a major circulating metabolite. In the kidney, 25D is subsequently metabolized to the hormonally active form, 1,25-dihydroxyvitamin D (1,25D), via 1α-hydroxylase encoded by the CYP27B1 gene. 1,25D has a cellular effect through the vitamin D receptor, which leads to calcium absorption in the gut, bone metabolism, and parathyroid function. A recent study showed that a low vitamin D status is common worldwide and is associated with various diseases including kidney, heart, and liver failure, secondary hyperparathyroidism, osteomalacia, inflammatory bowel disease, granuloma-forming disorders (sarcoidosis and tuberculosis), and cancer. Vitamin D deficiency also increases the risks of falls, fractures, bone loss, sarcopenia, leading to worse outcomes of illness severity, morbidity, and mortality. The 1,25D/25D ratio is considered to be a useful tool for diagnosis of ocular sarcoidosis; however, its clinical utility and relevance to pathophysiology of evaluation of the ratio 1,25D/25D which indicates vitamin D activation have remained unknown. To clarify the clinical usefulness of markers for vitamin D activation, 87 patients in whom serum 25D and 1,25D level was measured were retrospectively reviewed in the present study. Data for 79 patients (33 males and 46 females) were analyzed after exclusion of 8 patients taking vitamin D. The median serum 1,25D/25D ratio was significantly lower in males than in females: 4.1 (IQR: 2.3–5.8) x 10−3 versus 6.8 (3.0–9.8) x 10−3. However, individual levels of 25D and 1,25D were not different in males and females. The major categories of main disorders were endocrine (30.6 %), inflammatory (18.5 %), and bone-related (16.7 %) disorders. The ratios of serum 1,25D/25D had significant negative correlations with femoral dual energy X-ray absorptiometry % young adult mean (DEXA %YAM) (R=-0.35) and lumbar DEXA %YAM (R=-0.32). Significant correlations were found between 1,25D/25D ratio and serum levels of inorganic phosphate (R=-0.34), intact parathyroid hormone (R=0.64) and alkaline phosphatase (R=0.46) in all patients. Of interest, the 1,25D/25D ratio had gender-specific characteristics: the ratio had a significant correlation with age in males (R=0.49), while it had a significant correlation with body mass index (BMI) in females (R=0.34). Collectively, the results revealed that the ratio of serum 1,25D/25D as a marker for activation of vitamin D had relevance to clinical parameters, especially bone turnover, with gender-specific features. It is suggested that the existence of a gender-specific difference of aging males and obese females regarding the activation of vitamin D that is functionally linked to bone metabolism.


Sign in / Sign up

Export Citation Format

Share Document