scholarly journals Cold-modulated small proteins abundance in winter triticale (x Triticosecale, Wittm.) seedlings tolerant to the pink snow mould (Microdochium nivale, Samuels & Hallett) infection

Author(s):  
Gabriela Julia Golebiowska ◽  
Emilia Bonar ◽  
Kaveh Emami ◽  
Maria Wędzony

Two winter triticale (x Triticosecale Wittmack) model cultivars: Hewo (tolerant to pink snow mould) and Magnat (sensitive) were used to test the effect of cold-hardening (4 weeks at 4°C) on soluble ≤50 kDa protein profiles of the seedling leaves. The presence and abundance of individual proteins were analysed via two-dimensional gel electrophoresis (2-DE) and Surface-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI-TOF). Up to now, no proteomics analysis of triticale response to hardening has been performed. Thus, the present paper is the first in the series describing the obtained results. In our experiments, the exposure to the low temperature-induced only quantitative changes in the leaves of both cultivars, causing either an increase or decrease of 4–50 kDa protein abundance. Among proteins which were cold-accumulated in cv. Hewo’s leaves, we identified two thioredoxin peroxidases (chloroplastic thiol-specific antioxidant proteins) as well as mitochondrial- β-ATP synthase subunit and ADP-binding resistance protein. On the contrary, in hardened seedlings of this genotype, we observed the decreased level of chloroplastic RuBisCO small subunit PW9 and epidermal peroxidase 10. Simultaneous SELDI-TOF analysis revealed several low mass proteins better represented in cold-hardened plants of tolerant genotype in comparison to the sensitive one and the impact of both genotype and temperature on their level. Based on those results, we suggest that indicated proteins might be potential candidates for molecular markers of cold-induced snow mould resistance of winter triticale and their role is worth to be investigated in the further inoculation experiments.

2012 ◽  
Vol 12 (1) ◽  
pp. 171 ◽  
Author(s):  
Goetz Hensel ◽  
Sylwia Oleszczuk ◽  
Diaa Eldin S Daghma ◽  
Janusz Zimny ◽  
Michael Melzer ◽  
...  

1985 ◽  
Vol 65 (2) ◽  
pp. 451-452
Author(s):  
V. W. POYSA ◽  
E. REINBERGS

OAC Decade is a new winter triticale (X Triticosecale Wittmack) cultivar with higher yield, shorter straw, better lodging resistance, and earlier maturity than OAC Wintri, the only presently licensed winter triticale cultivar in Canada. It is well adapted to the growing conditions in Eastern Canada, Quebec, and Ontario. It received license No. 2440 on 13 Aug. 1984. Breeder seed of OAC Decade is maintained by the Crop Science Department, University of Guelph, Guelph, Ontario.Key words: Triticale (winter), X Triticosecale Wittmack, cultivar description


2021 ◽  
Vol 22 (7) ◽  
pp. 3382
Author(s):  
Silvia Saturio ◽  
Alicja M. Nogacka ◽  
Marta Suárez ◽  
Nuria Fernández ◽  
Laura Mantecón ◽  
...  

The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 235 ◽  
Author(s):  
Katharina V Alheit ◽  
Hans Maurer ◽  
Jochen C Reif ◽  
Matthew R Tucker ◽  
Volker Hahn ◽  
...  

2008 ◽  
Vol 74 (22) ◽  
pp. 6848-6858 ◽  
Author(s):  
F. Abram ◽  
E. Starr ◽  
K. A. G. Karatzas ◽  
K. Matlawska-Wasowska ◽  
A. Boyd ◽  
...  

ABSTRACT Sigma B (σB) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the ΔsigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The ΔsigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that σB contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the ΔsigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of σB in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the ΔsigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of σB. It also demonstrated clear roles for σB in both osmotic and low-pH stress tolerance and identified specific components of the σB regulon that contribute to the responses observed.


Author(s):  
Mohamed Mergoum ◽  
Suraj Sapkota ◽  
Ahmed ElFatih A. ElDoliefy ◽  
Sepehr M. Naraghi ◽  
Seyed Pirseyedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document