scholarly journals Isolation and identification of guaiacol producing Alicyclobacillus fastidiosus strains from orchards in Poland

Author(s):  
Barbara Sokolowska ◽  
Marzena Połaska ◽  
Agnieszka Dekowska

The genus Alicyclobacillus comprises a group of Gram-positive, thermo-acidophilic bacteria that are capable of producing highly resistant endospores during unfavorable environmental conditions. The members of this genus inhabit natural environments, including hot springs and soils. The main reason behind the spoilage of final commercial fruit products by Alicyclobacillus is the contamination of fruits with soil at the time of harvesting. Some of the Alicyclobacillus species, including Alicyclobacillus acidoterrestris, are categorized as spoilage bacteria due to their ability to produce off-flavor compounds (e.g., guaiacol and halophenols) that adversely affect the taste and aroma of beverages. In our study, Alicyclobacillus species were isolated from Polish orchard soils and fruits and were subjected to 16S rDNA sequencing. The results of the analysis showed that the isolated strains belonged to A. acidoterrestris and Alicyclobacillus fastidiosus species. All the three isolated strains of A. fastidiosus (f1, f2, f3) exhibited similar morphological and biochemical properties as the strain described in the literature. However, these isolated strains were able to produce guaiacol at temperatures of 20°C, 25°C, and 45°C. Thus, the strains of A. fastidiosus discovered in the present study can be included in the group of spoilage species as they possessed the gene responsible for the production of guaiacol.

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Lenka MALINIČOVÁ ◽  
Lea NOSÁĽOVÁ ◽  
Ivana TIMKOVÁ ◽  
Peter PRISTAŠ ◽  
Jana SEDLÁKOVÁ-KADUKOVÁ

Biogeochemical cycling of gold involves dispersion and reconcentration of gold (Au) due to physical, chemical and biological processesin Earth surface environments. These processes are evocated by a metabolic activity of different microbial taxa but many of them (andalso their biogeochemical potential) are still unexplored. Understanding the gold cycling is necessary for developing innovative, environmentally friendly gold processing techniques. Our experiments were aimed on isolation and identification of heterotrophic bacteriafrom ore and ore storage dump samples collected in Rozália gold mine in Hodruša-Hámre. Using culture-based approach followed bycombination of MALDI-TOF MS protein profiling and 16S rDNA sequencing, 18 different bacterial genera were identified in studiedmicrobiota. The participation of several representatives of these genera in individual gold cycling steps has already been reported. Thereal involvement of bacterial isolates in gold transformation reactions and their biogeochemical potential will be studied in subsequentexperiments.


2004 ◽  
Vol 54 (4) ◽  
pp. 1123-1127 ◽  
Author(s):  
Franco Fanti ◽  
Enrico Tortoli ◽  
Leslie Hall ◽  
Glenn D. Roberts ◽  
Reiner M. Kroppenstedt ◽  
...  

The isolation and identification of a novel, slow-growing, scotochromogenic, mycobacterial species is reported. A strain, designated MUP 1182T, was isolated from a cervical lymph node of a 3-year-old child. MUP 1182T is alcohol- and acid-fast, with a lipid pattern that is consistent with those of species that belong to the genus Mycobacterium. It grows slowly at 25–37 °C, but does not grow at 42 °C. The isolate was revealed to be biochemically distinct from previously described mycobacterial species: it has urease and Tween hydrolysis activities and lacks nitrate reductase, 3-day arylsulfatase and β-glucosidase activities. Comparative 16S rDNA sequencing showed that isolate MUP 1182T represents a novel, slow-growing species that is related closely to Mycobacterium lentiflavum and Mycobacterium simiae. On the basis of these findings, the name Mycobacterium parmense sp. nov. is proposed, with MUP 1182T (=CIP 107385T=DSM 44553T) as the type strain.


2006 ◽  
Vol 73 (1) ◽  
pp. 168-178 ◽  
Author(s):  
Zengguo He ◽  
Duygu Kisla ◽  
Liwen Zhang ◽  
Chunhua Yuan ◽  
Kari B. Green-Church ◽  
...  

ABSTRACT A new bacterial strain, displaying potent antimicrobial properties against gram-negative and gram-positive pathogenic bacteria, was isolated from food. Based on its phenotypical and biochemical properties as well as its 16S rRNA gene sequence, the bacterium was identified as Paenibacillus polymyxa and it was designated as strain OSY-DF. The antimicrobials produced by this strain were isolated from the fermentation broth and subsequently analyzed by liquid chromatography-mass spectrometry. Two antimicrobials were found: a known antibiotic, polymyxin E1, which is active against gram-negative bacteria, and an unknown 2,983-Da compound showing activity against gram-positive bacteria. The latter was purified to homogeneity, and its antimicrobial potency and proteinaceous nature were confirmed. The antimicrobial peptide, designated paenibacillin, is active against a broad range of food-borne pathogenic and spoilage bacteria, including Bacillus spp., Clostridium sporogenes, Lactobacillus spp., Lactococcus lactis, Leuconostoc mesenteroides, Listeria spp., Pediococcus cerevisiae, Staphylococcus aureus, and Streptococcus agalactiae. Furthermore, it possesses the physico-chemical properties of an ideal antimicrobial agent in terms of water solubility, thermal resistance, and stability against acid/alkali (pH 2.0 to 9.0) treatment. Edman degradation, mass spectroscopy, and nuclear magnetic resonance were used to sequence native and chemically modified paenibacillin. While details of the tentative sequence need to be elucidated in future work, the peptide was unequivocally characterized as a novel lantibiotic, with a high degree of posttranslational modifications. The coproduction of polymyxin E1 and a lantibiotic is a finding that has not been reported earlier. The new strain and associated peptide are potentially useful in food and medical applications.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nidhi Srivastava ◽  
Indira P. Sarethy

Aims: Characterization of antimicrobial metabolites of novel Streptomyces sp. UK-238. Background: Novel antimicrobial drug discovery is urgently needed due to emerging multi antimicrobial drug resistance among pathogens. Since many years, natural products have provided the basic skeletons for many therapeutic compounds including antibiotics. Bioprospection of un/under explored habitats and focussing on selective isolation of actinobacteria as major reservoir of bio and chemodiversity has yielded good results. Objective: The main objectives of the study were the identification of UK-238 by 16S rDNA sequencing and antimicrobial metabolite fingerprinting of culture extracts. Method: In the present study, a promising isolate, UK-238, has been screened for antimicrobial activity and metabolite fingerprinting from the Himalayan Thano Reserve forest. It was identified by 16S rDNA sequencing. Ethyl acetate extract was partially purified by column chromatography. The pooled active fractions were fingerprinted by GC-MS and compounds were tentatively identified by collated data analysis based on Similarity Index, observed Retention Index from Databases and calculated Retention Index. Results: UK-238 was identified as Streptomyces sp. with 98.4% similarity to S. niveiscabiei. It exhibited broad-spectrum antibacterial and antifungal activity. GC-MS analysis of active fractions of ethyl acetate extract showed the presence of eighteen novel antimicrobial compounds belonging to four major categories- alcohols, alkaloid, esters and peptide. Conclusion: The study confirms that bioprospection of underexplored habitats can elaborate novel bio and chemodiversity.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 407-407
Author(s):  
Ki Beom Jang ◽  
Sung Woo Kim

Abstract This study aimed to evaluate supplemental effects of milk carbohydrates in whey permeate on jejunal mucosa-associated microbiota in nursery pigs during 7 to 11 kg BW. A total of 720 pigs at 7.5 kg BW were allotted to 6 treatments (6 pens/treatment and 20 pigs/pen). Treatments were 6 levels of whey permeate supplementation (0, 3.75, 7.50, 11.25, 15.00, and 18.75%) and fed to pigs for 11 d. On d 11, 36 pigs representing median BW of each pen were euthanized to collect the jejunal mucosa to evaluate microbiota in the jejunum by 16S rDNA sequencing. Data were analyzed using contrasts in MIXED procedure of SAS. Whey permeate contained 76.3% lactose and 0.4% milk oligosaccharides. Increasing whey permeate supplementation from 0 to 18.75% did not affect the alpha-diversity estimates of microbiota. Whey permeate supplementation tended to decrease (P = 0.073, 1.59 to 1.22) Firmicutes:Bacteroidetes compared with no addition of whey permeate. Increasing whey permeate supplementation tended to linearly increase Bifidobacteriaceae (P = 0.089, 0.73 to 1.11), decrease Enterobacteriaceae (P = 0.091, 1.04 to 0.52), decrease Stretococcaceae (P = 0.094, 1.50 to 0.71), and caused quadratic changes (P < 0.05) on Lactobacillaceae (maximum: 9.14% at 12.91% whey permeate). Increasing whey permeate supplementation caused a quadratic change (P < 0.05) on Lactobacillus_Salivarius (maximum: 0.92% at 7.35% whey permeate) and tended to cause quadratic changes on Lactobacillus_Rogosae (P = 0.083; maximum: 0.53% at 8.45% whey permeate) and Lactobacillus_Mucosae (P = 0.092; maximum: 0.70% at 6.98% whey permeate). In conclusion, supplementation of whey permeate as sources of lactose and milk oligosaccharides at a range from 7 to 13% seems to be beneficial to nursery pigs by increasing the abundance of lactic acid-producing bacteria in the jejunal mucosa.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Weston J. Jackson ◽  
Ipsita Agarwal ◽  
Itsik Pe’er

Motivation. Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k-means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Luying Shan ◽  
Yinjiao Li ◽  
Shi Zheng ◽  
Yuanmiao Wei ◽  
Ying Shang

Author(s):  
Jaiganesh R ◽  
Jaganathan Mk

Objective: The objective of this work was to isolation, purification and characterization of solvent tolerant lipase from Bacillus sp. The objective of this work was to isolation, purification and characterization of solvent tolerant lipase from Bacillus sp. from kitchen grease for a variety of applications including organic synthetic reactions and preparation of enantiomerically pure pharmaceuticals.Methods: Lipase producing isolates were screened from kitchen grease on a selective medium rhodamine B olive oil agar, and tributyrin agar was used to screen the lipase and esterase producing an organism, respectively. The isolate identified using 16S rDNA sequencing method and enzyme activity was quantitatively assayed. Lipase production was characterized in different conditions.Results: The isolate showed highest lipase activity was which later was identified as Bacillus sp. using 16S rDNA sequencing method. The lipase was purified using ammonium sulfate precipitation. The isolate showed excellent tolerance to methanol, ethanol, acetonitrile, and moderate tolerance to butanol. The increased biomass concentration, maximum production, and activity were achieved at 37°C in 24 h incubation, then gradual reduction in production was observed. The maximum activity of lipase enzyme was obtained at pH between 6 and 9.Conclusion: The isolate produce solvent tolerance lipase enzyme and it can be a promising candidate of solvent tolerance lipase enzyme for variety of industrial applications.


2016 ◽  
Vol 206 ◽  
pp. 66-72 ◽  
Author(s):  
Jian-Lei Gu ◽  
Yi-Zhong Wang ◽  
Shi-Yi Liu ◽  
Guang-Jun Yu ◽  
Ting Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document