scholarly journals Investigation of Best Practices in Volumetric Reconstruction for Plenoptic PIV

Author(s):  
Bibek Sapkota ◽  
Dustin Kelly ◽  
Zu Puayen Tan ◽  
Brian S. Thurow

This paper investigates the effect of smoothing operation in 3D reconstruction using a plenoptic camera. A plenoptic camera - also known as light field camera - features a commercial off the shelf camera with added microlens array (MLA) behind the imaging lens, directly in front of the sensor. The main lens focuses the light to the MLA plane, where each microlens then re-directs the light to small regions of pixels behind, each pixel corresponding to different angle of incident (T. Fahringer (2015)) (Adelson and Wang (1992)). Thus, MLA encodes angular information of incident light rays into the recorded image that assist to acquire 4D information (u,v,s,t) of light-field including both position and angular information of light rays captured by the camera (Ng et al. (2005)) (Adelson and Wang (1992)).

2020 ◽  
Vol 2020 (2) ◽  
pp. 100-1-100-6
Author(s):  
Takuya Omura ◽  
Hayato Watanabe ◽  
Naoto Okaichi ◽  
Hisayuki Sasaki ◽  
Masahiro Kawakita

We enhanced the resolution characteristics of a threedimensional (3D) image using time-division multiplexing methods in a full-parallax multi-view 3D display. A time-division light-ray shifting (TDLS) method is proposed that uses two polarization gratings (PGs). As PG changes the diffraction direction of light rays according to the polarization state of the incident light, this method can shift light rays approximately 7 mm in a diagonal direction by switching the polarization state of incident light and adjusting the distance between the PGs. We verified the effect on the characteristics of 3D images based on the extent of the shift. As a result, the resolution of a 3D image with depth is improved by shifting half a pitch of a multi-view image using the TDLS method, and the resolution of the image displayed near the screen is improved by shifting half a pixel of each viewpoint image with a wobbling method. These methods can easily enhance 3D characteristics with a small number of projectors.


2018 ◽  
Vol 26 (6) ◽  
pp. 7598 ◽  
Author(s):  
Zewei Cai ◽  
Xiaoli Liu ◽  
Xiang Peng ◽  
Bruce Z. Gao

2010 ◽  
Vol 39 (1) ◽  
pp. 123-126 ◽  
Author(s):  
袁艳 YUAN Yan ◽  
周宇 ZHOU Yu ◽  
胡煌华 HU Huang-hua

2020 ◽  
Vol 6 ◽  
pp. 591-603
Author(s):  
Maximilian Schambach ◽  
Fernando Puente Puente Leon
Keyword(s):  

2018 ◽  
Vol 8 (12) ◽  
pp. 2693 ◽  
Author(s):  
Philippe Massicotte ◽  
Guislain Bécu ◽  
Simon Lambert-Girard ◽  
Edouard Leymarie ◽  
Marcel Babin

The vertical diffuse attenuation coefficient for downward plane irradiance ( K d ) is an apparent optical property commonly used in primary production models to propagate incident solar radiation in the water column. In open water, estimating K d is relatively straightforward when a vertical profile of measurements of downward irradiance, E d , is available. In the Arctic, the ice pack is characterized by a complex mosaic composed of sea ice with snow, ridges, melt ponds, and leads. Due to the resulting spatially heterogeneous light field in the top meters of the water column, it is difficult to measure at single-point locations meaningful K d values that allow predicting average irradiance at any depth. The main objective of this work is to propose a new method to estimate average irradiance over large spatially heterogeneous area as it would be seen by drifting phytoplankton. Using both in situ data and 3D Monte Carlo numerical simulations of radiative transfer, we show that (1) the large-area average vertical profile of downward irradiance, E d ¯ ( z ) , under heterogeneous sea ice cover can be represented by a single-term exponential function and (2) the vertical attenuation coefficient for upward radiance ( K L u ), which is up to two times less influenced by a heterogeneous incident light field than K d in the vicinity of a melt pond, can be used as a proxy to estimate E d ¯ ( z ) in the water column.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Bing-Yau Huang ◽  
Shuan-Yu Huang ◽  
Chia-Hsien Chuang ◽  
Chie-Tong Kuo

This paper proposes an effective approach to fabricate a blue phase liquid crystal (BPLC) microlens array based on a photoconductive film. Owing to the characteristics of photo-induced conducting polymer polyvinylcarbazole (PVK), in which conductivity depends on the irradiation of UV light, a progressive mask resulting in the variation of conductivity is adopted to produce the gradient distribution of the electric field. The reorientations of liquid crystals according to the gradient distribution of the electric field induce the variation of the refractive index. Thus, the incident light experiences the gradient distribution of the refractive index and results in the focusing phenomenon. The study investigates the dependence of lens performance on UV exposure time, the focal length of the lens, and focusing intensities with various incident polarizations. The BPLC microlens array exhibits advantages such as electrically tunability, polarization independence, and fast response time.


Sign in / Sign up

Export Citation Format

Share Document