Application of Thermostable Lipolytic Bacterial Enzymes for Modern Biotechnological Processes: Review

2018 ◽  
Vol 18 (6) ◽  
pp. 61-73 ◽  
Author(s):  
Yu. V. Samoilova ◽  
K. N. Sorokina ◽  
A. V. Piligaev ◽  
V. N. Parmon

In the review paper, the modern investigations on the application of thermostable lipolytic bacterial enzymes for biotechnology are discussed, the properties of these enzymes discussed including their activity and functional stability at various temperatures, pH in organic solvents, as well as the substrate specificity and activity in the presence of various chemical compounds. The paper contains data on the development of recombinant producers of lipolytic bacterial enzymes and on approaches to improving their productivity. The application of the bacterial lipases for biotechnological processes of synthesis of biofuel, various chemicals and detergents, for food industry and wastewater treatment is considered.

2020 ◽  
Vol 5 (3) ◽  
pp. 179-184
Author(s):  
Marianna Havryshko ◽  
◽  
Olena Popovych ◽  
Halyna Yaremko ◽  
◽  
...  

At the present stage of development, the entire world industry has faced the problem of rational use of renewable natural resources, in particular the most efficient ways of wastewater treatment and the use of accumulated waste in the production process as a secondary raw material. In particular, the alcohol industry, as one of the components of food, medical, chemical and various industries,leads to the formation of huge amounts of waste, including wastewater. The food industry, like any other industry, has a negative impact on the environment. Water bodies are the most affected by the food industry. Almost the first place in terms of water consumption per unit of production is the production of alcohol. Consumption of large amounts of water leads to the formation of wastewater, which is highly polluted and adversely affects the environment. Due to the high chemical and biological consumption of oxygen, specific color and odor, suspended solids, low pH value, the purification of such waste in the filtration fields and discharge into water bodies is not possible. The purpose of our work is: 1) conducting the analysis of the alcohol industry potential in Ukraine in recent years, and methods of waste disposal as a potential source for the development of bioenergy. 2) environmental aspects of the alcohol industry modernization at present stage of development and implementation of modern wastewater treatment technologies.


Author(s):  
Bianca M.P. Silveira ◽  
Mayara C.S. Barcelos ◽  
Kele A.C. Vespermann ◽  
Franciele M. Pelissari ◽  
Gustavo Molina

2020 ◽  
Vol 12 (4) ◽  
pp. 1305 ◽  
Author(s):  
Kulczyński ◽  
Gramza-Michałowska ◽  
Królczyk

Antioxidants are a wide group of chemical compounds characterized by high bioactivity. They affect human health by inhibiting the activity of reactive oxygen species. Thus, they limit their harmful effect and reduce the risk of many diseases, including cardiovascular diseases, cancers, and neurodegenerative diseases. Antioxidants are also widely used in the food industry. They prevent the occurrence of unfavourable changes in food products during storage. They inhibit fat oxidation and limit the loss of colour. For this reason, they are often added to meat products. Many diet components exhibit an antioxidative activity. A high antioxidative capacity is attributed to fruit, vegetables, spices, herbs, tea, and red wine. So far, the antioxidative properties of various plant materials have been tested. However, the antioxidative activity of some products has not been thoroughly investigated yet. To date, there have been only a few studies on the antioxidative activity of the pumpkin, including pumpkin seeds, flowers, and leaves, but not the pulp. The main focus of our experiment was to optimize the extraction so as to increase the antioxidative activity of the pumpkin pulp. Variable extraction conditions were used for this purpose, i.e., the type and concentration of the solvent, as well as the time and temperature of the process. In addition, the experiment involved a comparative analysis of the antioxidative potential of 14 pumpkin cultivars of the Cucurbita maxima species. The study showed considerable diversification of the antioxidative activity of different pumpkin cultivars.


2019 ◽  
Vol 16 (155) ◽  
pp. 20190042 ◽  
Author(s):  
Paulina A. Dzianach ◽  
Gary A. Dykes ◽  
Norval J. C. Strachan ◽  
Ken J. Forbes ◽  
Francisco J. Pérez-Reche

This article reviews modern applications of mathematical descriptions of biofilm formation. The focus is on theoretically obtained results which have implications for areas including the medical sector, food industry and wastewater treatment. Examples are given as to how models have contributed to the overall knowledge on biofilms and how they are used to predict biofilm behaviour. We conclude that the use of mathematical models of biofilms has demonstrated over the years the ability to significantly contribute to the vast field of biofilm research. Among other things, they have been used to test various hypotheses on the nature of interspecies interactions, viability of biofilm treatment methods or forces behind observed biofilm pattern formations. Mathematical models can also play a key role in future biofilm research. Many models nowadays are analysed through computer simulations and continue to improve along with computational capabilities. We predict that models will keep on providing answers to important challenges involving biofilm formation. However, further strengthening of the ties between various disciplines is necessary to fully use the tools of collective knowledge in tackling the biofilm phenomenon.


2015 ◽  
Vol 35 (4) ◽  
pp. 721-732 ◽  
Author(s):  
Simone M. M. Oliveira ◽  
Simone D. Gomes ◽  
Luciane Sene ◽  
Divair Christ ◽  
Julia Piechontcoski

ABSTRACT 2-Phenylethanol (PE) is an aromatic alcohol with a characteristic odor of roses, widely used in food industry to modify certain aroma compositions in formulations with fruit, jam, pudding, and chewing gums, and also in cosmetic and fragrance industry. This compound occurs naturally in low concentrations in some essential oils from flowers and plants. An alternative to plants extraction are biotechnological processes. This study evaluated 2-phenylethanol’s production in cultivation of Saccharomyces cerevisiae in cassava wastewater originated from starch industry. The substrate was supplemented with glucose and L-phenylalanine in order to obtain higher 2-phenylethanol concentrations and better efficiency in glucose/2-phenylethanol conversion. It was performed using Rotatable Center Composite Design and response surface analysis. Cultures were performed under aerobic conditions in a batch system in Erlenmeyer flasks containing 50 mL of medium in shaker at 150 rpm and 24 ± 1 ºC. The highest PE values were obtained with supplementation of 20.0 g.L-1 of glucose and 5.5 g.L-1 of L-phenylalanine, which has been experimentally validated, obtaining a PE production of 1.33 g.L-1 and PE/glucose yield factor of 0.070 g.g-1, equivalent to 74.3 and 89.7% of desirability values according to the validated model.


2018 ◽  
Vol 39 (3) ◽  
pp. 137
Author(s):  
Viktoria Shcherbakova ◽  
Olga Troshina

Polar permanently frozen grounds cover more than 20% of the earth's surface, and about 60% of the Russian territories are permafrost. In the permafrost environments, the combination of low temperature and poor availability of liquid water make these habitats extremely inhospitable for life. To date, both culture-dependent and culture-independent methods have shown that permafrost is a habitat for microorganisms of all three domains: Bacteria, Archaea and Eukarya. An overview of applying psychrophilic and psychrotolerant bacteria and archaea isolated from Arctic and Antarctic permafrost ecosystems in biotechnological processes of wastewater treatment, production of cold-adapted enzymes, etc. is discussed here. The study of existing collections of microorganisms isolated from permanently cold habitats, improved methods of sampling and enrichment will increase the potential biotechnological applications of permafrost bacteria and archaea producing unique biomolecules.


2019 ◽  
Vol 167 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Ameni Ktata ◽  
Najeh Krayem ◽  
Ahmed Aloulou ◽  
Sofiane Bezzine ◽  
Adel Sayari ◽  
...  

Abstract Treatment of oily wastewater is constantly a challenge; biological wastewater treatment is an effective, cheap and eco-friendly technology. A newly thermostable, haloalkaline, solvent tolerant and non-induced lipase from Aeribacillus pallidus designated as GPL was purified and characterized of biochemical and molecular study for apply in wastewater treatment. The GPL showed a maximum activity at 65°C and pH 10 after 22 h of incubation, with preference to TC4 substrates. Pure enzyme was picked up after one chromatographic step. It displayed an important resistance at high temperature, pH, NaCl, at the presence of detergents and organic solvents. In fact, GPL exhibited a prominent stability in wide range of organic solvents at 50% (v/v) concentration for 2 h of incubation. The efficiency of the GPL in oil wastewater hydrolysis was established at 50°C for 1 h, the oil removal efficiency was established at 96, 11% and the oil biodegradation was confirmed through fourier transform infrared (FT-IR) spectroscopy. The gene that codes for this lipase was cloned and sequenced and its open reading frame encoded 236 amino acid residues. The deduced amino acids sequence of the GPL shows an important level of identity with Geobacillus lipases.


Sign in / Sign up

Export Citation Format

Share Document