scholarly journals Modulation of Butyrate Anticancer Activity by Solid Lipid Nanoparticle Delivery: An in Vitro Investigation on Human Breast Cancer and Leukemia Cell Lines

2014 ◽  
Vol 17 (2) ◽  
pp. 231 ◽  
Author(s):  
Federica Foglietta ◽  
Loredana Serpe ◽  
Roberto Canaparo ◽  
Nicoletta Vivenza ◽  
Giovanna Riccio ◽  
...  

Purpose. Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate’s clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. Methods. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. Results. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Conclusions. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.Purpose. Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate’s clinical use is hampered by unfavorable pharmacological pharmacokinetic and pharmacodynamicproperties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. Methods. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation was investigated on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. Results. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Conclusions. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with the difference in cells’ properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. <w:LsdException Locked="false"

2020 ◽  
Vol 11 ◽  
Author(s):  
Geeta S. Bhagwat ◽  
Rajani B. Athawale ◽  
Rajeev P. Gude ◽  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
...  

Breast cancer is conventionally treated by surgery, chemotherapy and radiation therapy followed by post operational hormonal therapy. Tamoxifen citrate is a best option to treat breast cancer because its selective estrogen receptor modulation activity. Owing to its antiestrogenic action on breast as well as uterine cells, Tamoxifen citrate shows uterine toxicity. The dose 20 mg per day of Tamoxifen citrate required to show therapeutic effect causes side effects and toxicity to vital organs such as liver, kidney and uterus. In the present study, transferrin-conjugated solid lipid nanoparticles (SLNs) were successfully prepared to enhance the active targeting of tamoxifen citrate in breast cancer. Developed formulations were evaluated for particle size, surface charge, surface morphology and in vitro dissolution studies. Developed formulations exhibited more cytotoxicity as compared to pure Tamoxifen citrate solution in time as well as concentration dependent manner on human breast cancer MCF-7 cells. Further, cell uptake and flow cytometry studies confirmed the qualitative uptake of developed D-SLN and SMD-SLN by human breast cancer MCF-7 cells. Overall, proposed study highlights that transferrin engineered nanocarriers could enhance the therapeutic response of nanomedicines for breast cancer treatment.


2019 ◽  
Vol 9 (20) ◽  
pp. 4438 ◽  
Author(s):  
Amélia Silva ◽  
Carlos Martins-Gomes ◽  
Tiago Coutinho ◽  
Joana Fangueiro ◽  
Elena Sanchez-Lopez ◽  
...  

The surface properties of nanoparticles have decisive influence on their interaction with biological barriers (i.e., living cells), being the concentration and type of surfactant factors to have into account. As a result of different molecular structure, charge, and degree of lipophilicity, different surfactants may interact differently with the cell membrane exhibiting different degrees of cytotoxicity. In this work, the cytotoxicity of two cationic solid lipid nanoparticles (SLNs), differing in the cationic lipids used as surfactants CTAB (cetyltrimethylammonium bromide) or DDAB (dimethyldioctadecylammonium bromide), referred as CTAB-SLNs and DDAB-SLNs, respectively, was assessed against five different human cell lines (Caco-2, HepG2, MCF-7, SV-80, and Y-79). Results showed that the cationic lipids used in SLN production highly influenced the cytotoxic profile of the particles, with CTAB-SLNs being highly cytotoxic even at low concentrations (IC50 < 10 µg/mL, expressed as CTAB amount). DDAB-SLNs produced much lower cytotoxicity, even at longer exposure time (IC50 from 284.06 ± 17.01 µg/mL (SV-80) to 869.88 ± 62.45 µg/mL (MCF-7), at 48 h). To the best of our knowledge, this is the first report that compares the cytotoxic profile of CTAB-SLNs and DDAB-SLNs based on the concentration and time of exposure, using different cell lines. In conclusion, the choice of the right surfactant for biological applications influences the biocompatibility of the nanoparticles. Regardless the type of drug delivery system, not only the cytotoxicity of the drug-loaded nanoparticles should be assessed, but also the blank (non-loaded) nanoparticles as their surface properties play a decisive role both in vitro and in vivo.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rita R. Lala ◽  
Amol S. Shinde

Abstract Background The main objective of the present study was to formulate, optimize and characterize solid lipid nanoparticles (SLNs) loaded with Atorvastatin Calcium (ATS) and Vinpocetine (VIN) as a potential drug delivery system to improve its solubility and assess its anti-tumor activity on cell lines. The SLNs were formulated by emulsification with high speed homogenization followed by probe sonication. Central composite design was selected for optimization. Drug: lipid ratio, surfactant: co-surfactant ratio and homogenization speed were considered critical process parameters (CPP) to study the effects on critical quality attributes (CQA) of SLNs i.e. particle size, percent entrapment efficiency (% EE) and percent drug loading (% DL). Results The optimized (F3) SLNs formulations were characterized by transmission electron microscopy (TEM), X- ray diffraction (X-RD), in vitro drug release by dialysis bag method and stability studies. In vitro cell line studies were performed on HepG2, MCF 7 and melanoma B16 F10 cell line. The optimized F3 formulation showed a particle size of 323 ± 6 nm, poly dispersity index (PDI) 0.333 ± 0.02, Zeta potential (ZP) − 30.4 ± 0.66 emv with % EE 64.69 ± 1.1; 65.98 ± 0.91 of ATS and VIN respectively. In vitro release (F3) of ATS and VIN in PBS pH 7.4 was found to be 89.45% and 91.86%, respectively, up to 24 h. Conclusions In vitro cell line study demonstrated that SLNs enhanced the anti-cancer activity of ATS, VIN on all the stated cell lines when compared with free drugs. Combination index (CI) for HEPG2 was 0.8, which signified synergistic effect. The results exhibited that SLNs is effective, stable and had enhanced activity against HepG2, MCF 7 and melanoma B16 F10 cell lines.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lu Wang ◽  
Shengpeng Wang ◽  
Ruie Chen ◽  
Yanping Wang ◽  
Hui Li ◽  
...  

Oridonin (ORI), a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs). ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.


2016 ◽  
Vol 13 (8) ◽  
pp. 1339-1350
Author(s):  
Ibrahim Kani ◽  
Gokhan Dikmen ◽  
Gamze Eskiler ◽  
Gulsah Cecener ◽  
Berrin Tunca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document