scholarly journals Complementary Metal Oxide Semiconductor Image Sensor Using a Gate/Body-Tied P-Channel Metal Oxide Semiconductor Field Effect Transistor-Type Photodetector for High-Speed Binary Operation

2018 ◽  
pp. 129 ◽  
2021 ◽  
Author(s):  
Kamal Y. Kamal ◽  
Radu Muresan ◽  
Arafat Al-Dweik

<p>This article reviews complementary metal-oxide-semiconductor (CMOS) based physically unclonable functions (PUFs) in terms of types, structures, metrics, and challenges. The article reviews and classifies the most basic PUF types. The article reviews the basic variations originated during a metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process. Random <a>variations</a> at transistor level lead to acquiring unique properties for electronic chips. These variations help a PUF system to generate a unique response. This article discusses various concepts which allow for more variations at CMOS technology, layout, masking, and design levels. It also discusses various PUF related topics.</p>


1998 ◽  
Vol 37 (Part 1, No. 11) ◽  
pp. 5926-5931
Author(s):  
Masahiro Shimizu ◽  
Takashi Kuroi ◽  
Masahide Inuishi ◽  
Hideaki Arima ◽  
Haruhiko Abe ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yu-Yang Tsai ◽  
Chun-Yu Kuo ◽  
Bo-Chang Li ◽  
Po-Wen Chiu ◽  
Klaus Y. J. Hsu

In recent years, the characteristics of the graphene/crystalline silicon junction have been frequently discussed in the literature, but study of the graphene/polycrystalline silicon junction and its potential applications is hardly found. The present work reports the observation of the electrical and optoelectronic characteristics of a graphene/polycrystalline silicon junction and explores one possible usage of the junction. The current–voltage curve of the junction was measured to show the typical exponential behavior that can be seen in a forward biased diode, and the photovoltage of the junction showed a logarithmic dependence on light intensity. A new phototransistor named the “photodiode–oxide–semiconductor field effect transistor (PDOSFET)” was further proposed and verified in this work. In the PDOSFET, a graphene/polycrystalline silicon photodiode was directly merged on top of the gate oxide of a conventional metal–oxide–semiconductor field effect transistor (MOSFET). The magnitude of the channel current of this phototransistor showed a logarithmic dependence on the illumination level. It is shown in this work that the PDOSFET facilitates a better pixel design in a complementary metal–oxide–semiconductor (CMOS) image sensor, especially beneficial for high dynamic range (HDR) image detection.


Sign in / Sign up

Export Citation Format

Share Document