scholarly journals Always Best Connected Mobile Sensor Network to Support High Accuracy Internet of Farming

2017 ◽  
Vol 6 (2) ◽  
pp. 51-58
Author(s):  
Ahmed H. Alahmadi

The Internet of Farming be dependent on data gathered from sensor of Wireless Sensor Network (WSN). The WSN requires a reliable connectivity to provide accurate prediction data of the farming system. This paper introduces a mechanism that gives always best connectivity (ABC). The mechanism considers all stakeholders (mobile node, corresponding node and users) attributes. An empirical simulation shows that the proposed mechanism provides an acceptable ABC to the mobile sensors in the WSN.

Author(s):  
Ahmed Alahmadi ◽  
Tami Alwajeeh ◽  
Vasuky Mohanan ◽  
Rahmat Budiarto

The Internet of Things (IoT) is transforming the agriculture industry and enables farmers to deal with the vast challenges in the industry. Internet of Farming (IoF) applications increases the quantity, quality, sustainability as well as cost effectiveness of agricultural production. Farmers leverage IoF to monitor remotely, sensors that can detect soil moisture, crop growth and livestock feed levels, manage and control remotely the smart connected harvesters and irrigation equipment, and utilize artificial intelligence based tools to analyze operational data combined with 3rd party information, such as weather services, to provide new insights and improve decision making. The Internet of Farming relies on data gathered from sensor of Wireless Sensor Network (WSN). The WSN requires a reliable connectivity to provide accurate prediction of the farming system. This chapter proposes a strategy that provides always best connectivity (ABC). The strategy considers a routing protocol to support Low-power and lossy networks (LLN), with a minimum energy usage. Two scenarios are presented.


2017 ◽  
Vol 3 (2) ◽  
pp. 76
Author(s):  
Octarina Nur Samijayani ◽  
Ibnu Fauzi

<p><em>Abstrak</em> - <strong>Keamanan rumah menjadi hal yang sangat penting ketika pemilik rumah meninggalkan rumah dalam keadaan kosong. Selain pencurian, kebakaran juga merupakan masalah yang sering kali terjadi ketika rumah ditinggal pemiliknya. Sebagai alternatif solusi untuk menjaga dan mengawasi rumah yang diajukan pada penelitian ini ialah menggunakan teknologi Jaringan Sensor Nirkabel yang terintegrasi dengan jaringan internet, sehingga pemilik rumah tetap dapat mengawasi keadaan rumah dari jarak jauh. Pada penelitian ini dirancang prototype sistem rumah pintar atau Smart Home yang memanfaatkan teknologi Jaringan Sensor Nirkabel menggunakan standard Zigbee. Beberapa node sensor ditempatkan pada peralatan rumah, dimana setiap node dapat saling berkomunikasi secara wireless dan terpusat di node kordinator. Selanjutnya node kordinatior akan terhubung ke jaringan internet sehingga pemilik rumah dapat membuka aplikasi smart home kapan saja dan dimana saja. Rancangan sistem <em>Smart Home</em> disimulasikan menggunakan rumah model untuk menguji kinerja perangkat <em>Smart Home</em>. Pengujian kinerja Smart Home dimulai dengan pengujian keakurasian masing masing data sensor hingga waktu respon komunikasi dari sensor ke pusat monitoring. Tingkat error pembacaan suhu disetiap ruangan ialah 1 - 4.27%. Sensor PIR berhasil mendeteksi keberadaan orang di suatu ruangan dengan waktu delay </strong><strong>adalah 2.8 detik dengan jarak maksimal 5 meter</strong><strong>. Fungsi kendali dan monitoring (<em>on/off</em>) perangkat elektronik bekerja dengan baik, dengan waktu respon kurang dari 1 detik. Dari hasil pengujian komunikasi nirkabel antar node, diperoleh bahwa jarak maksimal antar node ialah sekitar 20 m, dengan rata-rata waktu respon pengiriman data ialah 1-2 detik. Adapun waktu respon mengalami delay mencapai 2 detik apabila beberapa perintah kendali dilakukan pada waktu yang bersamaan.</strong></p><p> </p><p><strong><em>Kata Kunci - </em></strong><em>Smart Home</em>, Jaringan Sensor Nirkabel, Zigbee.</p><p> </p><p><em>Abstrak</em><strong> - Home security becomes very important when homeowners leave the house empty. In addition to theft, fire is also a problem that often occurs when the house left the owner. As an alternative solution to maintain and supervise the homes submitted in this study is to use Wireless Sensor Network technology integrated with the Internet network, so that homeowners can still monitor the state of the house remotely. In this study designed prototype smart home system or Smart Home which utilizes Wireless Sensor Network technology using Zigbee standard. Some sensor nodes are placed in the home equipment, where each node can communicate wirelessly and centrally at the coordinator node. Next node coordinate will be connected to the internet network so that homeowners can open smart home application anytime and anywhere. The Smart Home system design is simulated using a home model to test the performance of Smart Home devices. Smart Home performance testing begins with testing the accuracy of each sensor data until the communication response time from the sensor to the monitoring center. The error rate of temperature readings in each room is 1 - 4.27%. PIR sensor successfully detects the presence of people in a room with a delay time is 2.8 seconds with a maximum distance of 5 meters. The control and monitoring functions (on / off) of electronic devices work well, with a response time of less than 1 second. From the results of testing wireless communication between nodes, obtained that the maximum distance between nodes is about 20 m, with the average response time of data transmission is 1-2 seconds. The response time has a delay of 2 seconds if some control commands are done at the same time.</strong><strong></strong></p><p><strong> </strong></p><p><strong><em>Keywords - </em></strong> <em>Smart Home</em>, Jaringan Sensor Nirkabel, Zigbee.</p>


Author(s):  
Edison Pignaton de Freitas ◽  
Tales Heimfarth ◽  
Ivayr Farah Netto ◽  
Carlos Eduardo Pereira ◽  
Armando Morado Ferreira ◽  
...  

2017 ◽  
Vol 16 (7) ◽  
pp. 7031-7039
Author(s):  
Chamanpreet Kaur ◽  
Vikramjit Singh

Wireless sensor network has revolutionized the way computing and software services are delivered to the clients on demand. Our research work proposed a new method for cluster head selection having less computational complexity. It was also found that the modified approach has improved performance to that of the other clustering approaches. The cluster head election mechanism will include various parameters like maximum residual energy of a node, minimum separation distance and minimum distance to the mobile node. Each CH will create a TDMA schedule for the member nodes to transmit the data. Nodes will have various level of power for signal amplification. The three levels of power are used for amplifying the signal. As the member node will send only its own data to the cluster head, the power level of the member node is set to low. The cluster head will send the data of the whole cluster to the mobile node, therefore the power level of the cluster head is set to medium. High power level is used for mobile node which will send the data of the complete sector to the base station. Using low energy level for intra cluster transmissions (within the cluster) with respect to cluster head to mobile node transmission leads in saving much amount of energy. Moreover, multi-power levels also reduce the packet drop ratio, collisions and/ or interference for other signals. It was found that the proposed algorithm gives a much improved network lifetime as compared to existing work. Based on our model, multiple experiments have been conducted using different values of initial energy.


Author(s):  
Bin Lin

The Internet of Things is another information technology revolution and industrial wave after computer, Internet and mobile communication. It is becoming a key foundation and an important engine for the green, intelligent and sustainable development of economic society. The new networked intelligent production mode characterized by the integration innovation of the Internet of Things is shaping the core competitiveness of the future manufacturing industry. The application of sensor network data positioning and monitoring technology based on the Internet of Things in industry, power and other industries is a hot field for the development of the Internet of Things. Sensor network processing and industrial applications are becoming increasingly complex, and new features have appeared in the sensor network scale and infrastructure in these fields. Therefore, the Internet of Things perception data processing has become a research hotspot in the deep integration process between industry and the Internet of Things. This paper deeply analyzes and summarizes the characteristics of sensor network perception data under the new trend of the Internet of Things as well as the research on location monitoring technology, and makes in-depth exploration from the release and location monitoring of sensor network perception data of the Internet of Things. Sensor network technology integrated sensor technology, micro-electromechanical system technology, wireless communication technology, embedded computing technology and distributed information processing technology in one, with easy layout, easy control, low power consumption, flexible communication, low cost and other characteristics. Therefore, based on the release and location monitoring technologies of sensor network data based on the Internet of Things in different applications, this paper studies the corresponding networking technologies, energy management, data management and fusion methods. Standardization system in wireless sensor network low cost, and convenient data management needs, design the iot oriented middleware, and develops the software and hardware system, the application demonstration, the results show that the design of wireless sensor network based on iot data monitoring and positioning technology is better meet the application requirements, fine convenient integration of software and hardware, and standardized requirements and suitable for promotion.


2020 ◽  
pp. 1522-1537 ◽  
Author(s):  
Essa Qasem Shahra ◽  
Tarek Rahil Sheltami ◽  
Elhadi M. Shakshuki

Wireless Sensor Network is deployed in many fields including military operations, mechanical applications, human services, smart homes, etc. However, deploying WSN encounters many challenges. One of the challenges is localizing the node position, especially mobile targets in critical situations. In this paper, the authors compare two types from range-free localization algorithms and one type from range-based algorithms, namely: Received Signal Strength (RSS), Centroid, and Distance Vector Hop (DV-Hops) protocols, using Cooja simulator. RSS localization algorithms require determining values of the RSS from the anchor nodes around the mobile node, to calculate the distance between the unknown mobile and the first three anchor nodes in the mobile range. The centroid localization requires only three anchors to compute the location of the mobile sensor without the need for distance measuring. Lastly, the DV-Hop algorithm uses routing tables of each anchor in the network topology to compute the Average Distance of Hops. The results show that rang-based algorithms are more accurate than range-free.


Sign in / Sign up

Export Citation Format

Share Document