scholarly journals Impact of Environmental and Climate Factors on Spatial Distribution of Cutaneous Leishmaniasis in Northeastern Iran: Utilizing Remote Sensing

Author(s):  
Mohammad Reza Shirzadi ◽  
Mohammad Javanbakht ◽  
Hassan Vatandoost ◽  
Nahid Jesri ◽  
Abedin Saghafipour ◽  
...  

Background: Cutaneous leishmaniasis (CL) is a dermal and parasitic disease.. The aim of this study was to determine the effect of environmental and climate factors on spatial distribution of CL in northeastern Iran by utilizing remote sensing from 20 March 2016 to 19 March 2017. Methods: In this ecological study, the data were divided into two parts: The descriptive data on human CL cases were gathered from Communicable Diseases center of Iran. The remote sensing techniques and satellite imagery data (TRMM, MODIS-Aqua, MODIS-Terra and AMSR-2 with spatial resolution 0.25°, 0.05°, 5600m and 10km) of environ­mental and climate factors were used to determine the spatial pattern changes of cutaneous leishmaniasis inci­dence. Results: The incidence of CL in North Khorasan, Razavi Khorasan, and South Khorasan was 35.80 per 100,000 people (309/863092), 34.14 per 100,000 people (2197/6,434,501) and 7.67 per 100,000 people (59/768,898), respectively. The incidence of CL had the highest correlation with soil moisture and evapotranspiration. Moreover, the incidence of dis­ease was significantly correlated with Normalized Difference Vegetation Index (NDVI) and air humidity while it had the lowest correlation with rainfall. Furthermore, the CL incidence had an indirect correlation relation with the air tem­perature meaning that with an increase in the temperature, the incidence of disease decreased. Conclusion: As such, the incidence of disease was also higher in the northern regions; most areas of North Khorasan and northern regions of Razavi Khorasan; where the rainfall, vegetation, specific humidity, evapotranspiration, and soil moisture was higher than the southern areas.

2021 ◽  
Vol 52 (3) ◽  
pp. 620-625
Author(s):  
Y. K. Al-Timimi

Desertification is one of the phenomena that threatening the environmental, economic, and social systems. This study aims to evaluate and monitor desertification in the central parts of Iraq between the Tigris and Euphrates rivers through the use of remote sensing techniques and geographic information systems. The Normalized difference vegetation index NDVI and the crust index CI were used, which were applied to two of the Landsat ETM + and OLI satellite imagery during the years 1990 and 2019. The research results showed that the total area of ​​the vegetation cover was 2620 km2 in 1990, while there was a marked decrease in the area Vegetation cover 764 km2 in 2019, accounting for 34.8% (medium desertification) and 10.2% (high desertification), respectively. Also, the results showed that sand dunes occupied an area of ​​767 km2 in 1990, while the area of ​​sand dunes increased to 1723 km2 in 2019, with a rate of 10.2%) medium desertification (and 22.9% (severe desertification), respectively. It was noted that the overall rate of decrease in vegetation cover was 21.33 km2year-1 while the overall rate of increase in ground erosion in the area is 10.99 km2year-1.


Author(s):  
K. Narmada ◽  
K. Annaidasan

Aim: To study the carbon storage potential of Muthupet mangroves in Tamil Nadu using Remote sensing techniques. Place and Duration: The study is carried out in Muthupet Mangroves for the years 2000, 2010 and 2017. Methodology: In this study the remote sensing images were processed using the ERDAS and ArcGIS software and the NDVI (Normalized Difference Vegetation Index) has also been applied to estimate the quantity of carbon sequestration capability for the Avicennia marina mangrove growing in the Muthupet region for the period 2000-2017. The formula proposed by Lai [10] was used to calculate the carbon stock using geospatial techniques. Results: The results show that the mangroves in Muthupet region has NDVI values between -0.671 and 0.398 in 2000, -0.93 and 0.621 in 2010 and -0.66 and 0.398 in 2017. The observation indicates the reliability and validity of the aviation remote sensing with high resolution and with near red spectrum experimented in this research for estimating the the Avicennia marina (Forsk.) mangrove growing in this region. The estimated quantity of carbon di oxide sequestrated by the mangrove was about 1475.642 Mg/Ha in 2000, 3646.312 Mg/Ha in 2010 and 1677.72 Mg/Ha in 2017. Conclusion: The capacity of the Avicennia marina growing in Muthupet region to sequestrate carbon show that it has a great potential for development and implementation. The results obtained in this research can be used as a basis for policy makers, conservationists, regional planners, and researchers to deal with future development of cities and their surroundings in regions of highly ecological and environmental sensitivity. Thus the finding shows that wetlands are an important ecological boon as it helps to control the impact of climate change in many different ways.


Irriga ◽  
2022 ◽  
Vol 1 (4) ◽  
pp. 722-729
Author(s):  
LEONCIO GONÇALVES RODRIGUES ◽  
ANA CÉLIA MAIA MEIRELES ◽  
CARLOS WAGNER OLIVEIRA

EMPREGO DO SENSORIAMENTO REMOTO PARA ANÁLISE DO USO E OCUPAÇÃO DO SOLO NO PERÍMETRO IRRIGADO VÁRZEAS DE SOUSA-PB     LEONCIO GONÇALVES RODRIGUES1; ANA CÉLIA MAIA MEIRELES2 E CARLOS WAGNER OLIVEIRA3   1Mestrando em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]. 2 Professora titular do Programa de pós graduação em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]  3 Professor titular do Programa de pós graduação em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]     1 RESUMO   O perímetro irrigado várzeas de Sousa (PIVAS) é um grande produtor de culturas como coco, banana, sorgo, algodão dentre outras. Tem grande importância para o desenvolvimento econômico da região do alto sertão da Paraíba. Possui características impares como a distribuição de água para todos os lotes por potencial gravitacional. Para a sustentabilidade do perímetro é necessário o monitoramento constante de suas áreas, para se poder desenvolver estratégias que auxiliam no desenvolvimento sustentável. Nesse sentido, o sensoriamento remoto é uma ferramenta ideal por permitir a obtenção rápida e precisa de informações sobre uma área, o que pode auxiliar na tomada de decisão. Partindo desse pressuposto, o objetivo deste trabalho é apresentar um conjunto de técnicas de sensoriamento que possibilitem o monitoramento de áreas irrigadas ou ambientais. Para tanto foi determinado do uso e ocupação do solo, o índice de vegetação por diferença normalizada (NDVI) e o índice de vegetação ajustado ao solo (SAVI) para o PIVAS. Onde se observou que as técnicas de sensoriamento remoto auxiliam na compreensão de áreas no espaço e tempo.   Palavras-chave: monitoramento, manejo, satélite.     RODRIGUES, L. G.; MEIRELES, A. C. M.; OLIVEIRA, C, W. USE OF REMOTE SENSING TO ANALYZE THE USE AND OCCUPANCY OF THE SOIL IN THE PERIMETER IRRIGATED VÁRZEAS DE SOUSA-PB.     2 ABSTRACT   The floodplain-irrigated perimeter of Sousa (PIVAS) is a major producer of crops such as coconut, banana, sorghum, cotton, among others. It is of great importance for the economic development of the upper wilderness region of Paraiba. It has unique characteristics such as water distribution to all lots by gravitational potential. For the sustainability of the perimeter, constant monitoring of its areas is necessary, to be able to develop strategies that help in sustainable development. In this sense, remote sensing is an ideal tool as it allows for quick and accurate obtaining information about an area, which can help in decision making. Based on this assumption, this work aims to present a set of sensing techniques that enable monitoring of irrigated or environmental areas. For this purpose, the normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI) were determined for the PIVAS. Where it was observed that remote sensing techniques help understand areas in space and time.   Keywords: monitoring, management, satellite.


2018 ◽  
Vol 247 ◽  
pp. 00017
Author(s):  
Anna Szajewska

The use of remote sensing techniques allows obtaining information about processes that occur on the surface of the Earth. In the aspects of fire protection and forest protection, it is important to know a burnt area which was created as a result of a fire of the soil cover or a total fire. The knowledge of this area is necessary to assess losses. Remote sensing techniques allow obtaining images in various spectral ranges. Remote sensing satellites offer multi-band data. Mathematical operations that operate on values coming from different spectral ranges allow determining various remote sensing indicators. The manuscript presents the possibility of using the NDVI (Normalized Difference Vegetation Index) to classify the burnt area. The NDVI is relatively easy to obtain because it operates in the spectral ranges from 630 up to 915 nm, and is obtainable with one detector only. Thus, it can be obtained without any major problems using unmanned aerial vehicles, regardless of time and cloudiness, as is the case when acquiring satellite images. The manuscript describes experimental research and presents the results.


2022 ◽  
Vol 88 (1) ◽  
pp. 47-53
Author(s):  
Muhammad Nasar Ahmad ◽  
Zhenfeng Shao ◽  
Orhan Altan

This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion of food chain and gross domestic product for Sindh, Pakistan.


Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 164
Author(s):  
Valentine Piroton ◽  
Romy Schlögel ◽  
Christian Barbier ◽  
Hans-Balder Havenith

Central Asian mountain regions are prone to multiple types of natural hazards, often causing damage due to the impact of mass movements. In spring 2017, Kyrgyzstan suffered significant losses from a massive landslide activation event, during which also two of the largest deep-seated mass movements of the former mining area of Mailuu-Suu—the Koytash and Tektonik landslides—were reactivated. This study consists of the use of optical and radar satellite data to highlight deformation zones and identify displacements prior to the collapse of Koytash and to the more superficial deformation on Tektonik. Especially for the first one, the comparison of Digital Elevation Models of 2011 and 2017 (respectively, satellite and unmanned aerial vehicle (UAV) imagery-based) highlights areas of depletion and accumulation, in the scarp and near the toe, respectively. The Differential Synthetic Aperture Radar Interferometry analysis identified slow displacements during the months preceding the reactivation in April 2017, indicating the long-term sliding activity of Koytash and Tektonik. This was confirmed by the computation of deformation time series, showing a positive velocity anomaly on the upper part of both landslides. Furthermore, the analysis of the Normalized Difference Vegetation Index revealed land cover changes associated with the sliding process between June 2016 and October 2017. In addition, in situ data from a local meteorological station highlighted the important contribution of precipitation as a trigger of the collapse. The multidirectional approach used in this study demonstrated the efficiency of applying multiple remote sensing techniques, combined with a meteorological analysis, to identify triggering factors and monitor the activity of landslides.


2013 ◽  
Vol 10 (6) ◽  
pp. 8117-8144
Author(s):  
R. Amri ◽  
M. Zribi ◽  
Z. Lili-Chabaane ◽  
C. Szczypta ◽  
J. C. Calvet ◽  
...  

Abstract. The aim of this paper is to use a dual, modified version of the FAO-56 methodology for the estimation of regional evapotranspiration. The proposed approach combines the FAO-56 technique with remote sensing. Two vegetation classes are considered in the evapotranspiration estimations. In the case of cereals, crop coefficients and cover fractions are estimated using relationships established with the Normalized Difference Vegetation Index (NDVI), retrieved from SPOT-VGT data. In order to characterize the soil, a relationship is established between evaporation and the retrieved soil moisture values, based on the ERS/WSC products developed by the University of Vienna. This approach is applied to a semi-arid region in central Tunisia (North Africa) and is validated over 1991–2007 period using simulations from the ISBA-A-gs physical SVAT model. The ISBA soil moisture outputs are validated using remotely sensed ERS/WSC products. Finally, a comparison is made between the ISBA and FAO approaches, for the same studied site.


Author(s):  
Salah A. H. Saleh

Basarah city has experienced a rapid urban expansion over the last decades dueto accelerated economic growth. This paper reports an investigation into the application ofthe integration of remote sensing and geographic information systems (GIS) for detectingurban built up growth for the period 1973 - 2002, and evaluate its impact on theenvironmental situation of Basarah city by analyzing the spatial distribution of urbanexpansion according to land cover types and normalized difference vegetation index(NDVI). The integration of remote sensing and GIS was found to be effective inmonitoring and analyzing urban growth patterns and in evaluating urbanization impact onsurface conditions of Baghdad area.


2015 ◽  
Vol 8 (3) ◽  
pp. 1197-1205 ◽  
Author(s):  
H. Norouzi ◽  
M. Temimi ◽  
C. Prigent ◽  
J. Turk ◽  
R. Khanbilvardi ◽  
...  

Abstract. The goal of this work is to intercompare four global land surface emissivity products over various land-cover conditions to assess their consistency. The intercompared land emissivity products were generated over a 5-year period (2003–2007) using observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and WindSat. First, all products were reprocessed in the same projection and spatial resolution as they were generated from sensors with various configurations. Then, the mean value and standard deviations of monthly emissivity values were calculated for each product to assess the spatial distribution of the consistencies/inconsistencies among the products across the globe. The emissivity products were also compared to soil moisture estimates and a satellite-based vegetation index to assess their sensitivities to changes in land surface conditions. Results show the existence of systematic differences among the products. Also, it was noticed that emissivity values in each product have similar frequency dependency over different land-cover types. Monthly means of emissivity values from AMSR-E in the vertical and horizontal polarizations seem to be systematically lower than the rest of the products across various land-cover conditions which may be attributed to the 01:30/13:30 LT overpass time of the sensor and possibly a residual skin temperature effect in the product. The standard deviation of the analyzed products was lowest (less than 0.01) in rain forest regions for all products and highest at northern latitudes, above 0.04 for AMSR-E and SSM/I and around 0.03 for WindSat. Despite differences in absolute emissivity estimates, all products were similarly sensitive to changes in soil moisture and vegetation. The correlation between the emissivity polarization differences and normalized difference vegetation index (NDVI) values showed similar spatial distribution across the products, with values close to the unit except over densely vegetated and desert areas.


Author(s):  
M. Piragnolo ◽  
G. Lusiani ◽  
F. Pirotti

Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.


Sign in / Sign up

Export Citation Format

Share Document