scholarly journals Sulfur dioxide adsorption by Iron Oxide Nanoparticles@Clinoptilolite/HCl

Author(s):  
Mina Mahmoodi Meimand ◽  
Ahmad Jonidi Jafari ◽  
Alireza Nasiri ◽  
Mohammad Malakootian

Introduction: The purpose of this study was to investigate and compare   the effect of iron oxide nanoparticles on the adsorption of sulfur dioxide by modified zeolite with hydrochloric acid. In this investigation was used modi- fied zeolite with HCl with and without iron oxide nanoparticles (Iron Oxide Nanoparticles@Clinoptilolite/HCl) as adsorbent. Materials and methods: Structural characteristics, chemical composition and specific surface area of adsorbent were determined using the FTIR, FE- SEM, EDX, Mapping, XRD, XRF and BET techniques. Glass cylinder filled with zeolite seeds and SO2 cylinder balanced with N2 gas was used for experi- ments. It was evaluated factors affecting SO2  uptake process including tem- perature and contact time, also thermodynamics and kinetics of adsorption. Sulfur dioxide adsorption of real sample was taken with both adsorbents. Results: Adsorption efficiency of SO2 in the synthetic and actual sample were %82.8±5.5 and %67.2±7.21 respectively, by modified zeolite with HCl and iron oxide nanoparticles in the optimum conditions of temperature of 25 °C and duration 28.5 min. As well as, removal percentage average was obtained in the synthetic and actual sample %46.1±4.34 and %35.8±5.85 respectively, by modified zeolite with HCl without nanoparticles in optimum condition of temperature of 25 °C and contact time of 20.5 min.The results showed that SO2  adsorption is an exothermic and spontaneous process and adsorption ki- netics of sulfur dioxide by both adsorbent is more consistent  Pseudo-second order kinetics model. Conclusion: The use of iron oxide nanoparticles on the zeolite can increase SO2 removal efficiency from the gas phase.

2018 ◽  
Vol 17 (11) ◽  
pp. 1787-1793 ◽  
Author(s):  
K. Bilici ◽  
A. Muti ◽  
F. Demir Duman ◽  
A. Sennaroğlu ◽  
H. Yağcı Acar

Photothermal activity of SPIONs is not dependent on the excitation wavelength, attenuation or laser intensity but to the power.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Adriana Zeleňáková ◽  
Pavol Hrubovčák ◽  
Ondrej Kapusta ◽  
Norbert Kučerka ◽  
Aleksander Kuklin ◽  
...  

Abstract Structural characteristics of nanocomposite series consisting of iron oxide nanoparticles (NPs) embedded in the regular pores of amorphous silica matrix (SBA-15) were investigated by means of small angle neutron scattering (SANS). By virtue of unique neutron properties, insight into the inner structure and matter organization of this kind of systems was facilitated for the first time. Based on rigorous experimental support, fundamental model describing the neutron scattering intensity distribution was proposed by assuming general composite structural features. Model application to SANS data confirmed the presence of iron oxide NPs in the body of examined matrices, providing additional information on their shape, concentration and size distribution. Scattering superposition principle employed in the model conception allows for tailoring its fundamental characteristics, and renders it a potent and versatile tool for a wide range of applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Aamir Abbas ◽  
Basim Ahmed Abussaud ◽  
Ihsanullah ◽  
Nadhir A. H. Al-Baghli ◽  
Marwan Khraisheh ◽  
...  

In this paper, carbon nanotubes (CNTs) impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2020 ◽  
Vol 2020 (3) ◽  
pp. 54-61
Author(s):  
S.E. Litvin ◽  
◽  
Yu.A. Kurapov ◽  
E.M. Vazhnichaya ◽  
Ya.A. Stel’makh ◽  
...  

2015 ◽  
Vol 22 (15) ◽  
pp. 1808-1828 ◽  
Author(s):  
Diana Couto ◽  
Marisa Freitas ◽  
Felix Carvalho ◽  
Eduarda Fernandes

Sign in / Sign up

Export Citation Format

Share Document