scholarly journals Phytosynthesis and Biological Activities of Fluorescent CuO Nanoparticles Using Acanthospermum hispidum L. Extract

2017 ◽  
Vol 7 (3) ◽  
Author(s):  
Shreyas Pansambal

Copper oxide nanoparticles (CuO-NPs) synthesized by an implicitly environmentally benign process using Acanthospermum hispidum L. aqueous plant extract as an effective bio-oxidizing/bio-reducing agent. Phytochemical screening of the fresh aqueous leaves extract showed the presence of coumarins, tannins, saponins, phenols, flavonoids, sterols and volatile oils. Fourier transform infrared spectroscopy confirmed the possible biomolecules responsible for the formation of copper oxide nanoparticles. X-ray diffraction patterns revealed the monoclinic phase of the synthesized copper oxide nanoparticles. The average size, shape and the crystalline nature of the nanoparticles were determined by field emission scanning electron microscopy and transmission electron microscopy analysis. Energy-dispersive X-ray spectroscopy analysis confirmed the presence of elements in the synthesized nanoparticles. Photoluminescence and fluorescence life-time spectroscopy showed luminescence properties of copper oxide nanoparticles. Furthermore, Copper oxide nanoparticles evinced highly robust antimicrobial, antimalarial and antimycobacterial activity against Pseudomonas aeruginosa, Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Plasmodium falciparum and Micobacterium tuberculosis H37RV. The current study demonstrates convenient utilization of Acanthospermum hispidum L. extract as a fuel for the efficient synthesis of copper oxide nanoparticles through a green synthesis method to obtain significantly biologically active material.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Kollur Shiva Prasad ◽  
Alakananda Patra ◽  
Govindaraju Shruthi ◽  
Shivamallu Chandan

The present study is mainly aimed at the synthesis of copper oxide nanoparticles of varied size by green synthetic approach. The structural and morphological behavior of as-synthesized CuO nanoparticles were investigated using ultraviolet-visible spectral studies (UV-Vis), Fourier transform-Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The reduction of copper ions using aqueous extract of S. indica leaves produces nanoparticles of varied size and morphology. The images from SEM investigation revealed that the particles are spherical in shape with average diameter of 40–70 nm. TEM and HRTEM images clearly indicate the crystallinity and spherical nature of as-synthesized CuO nanoparticles with interplanar distance between two neighboring lattice fringes of 0.315 nm.


2019 ◽  
Vol 26 (05) ◽  
pp. 1850184 ◽  
Author(s):  
C. THANGAMANI ◽  
M. PONNAR ◽  
P. PRIYADHARSHINI ◽  
P. MONISHA ◽  
S. S. GOMATHI ◽  
...  

Nickel-substituted copper oxide nanoparticles at various concentrations were synthesized by the microwave irradiation technique. The consequence of nickel doping on crystal structure, optical properties, and magnetic properties was examined by means of X-ray diffractometer, ultraviolet-visible spectrometer, Fourier transform infrared (FT-IR) spectrometer, transmission electron microscope, and vibrating sample magnetometer (VSM). X-ray diffraction analysis shows that the samples are monoclinic and their crystallite size varies from 25[Formula: see text]nm to 42[Formula: see text]nm, and lattice constant significantly increases with nickel concentration. Additional increase of nickel content (7%) decreases the lattice constant. TEM micrograph witnessed that the prepared nanoparticles were sphere-shaped and the particle distribution is in the range between 20 and 40[Formula: see text]nm. Bandgap measurement reveals that both undoped and nickel-doped copper oxides are direct bandgap semiconductor materials with bandgaps of 3.21 and 3.10[Formula: see text]eV, respectively, FT-IR spectra of the synthesized samples confirmed the nickel doping. VSM studies confirmed the ferromagnetic behavior of the synthesized samples at room temperature. The results revealed that the nickel-doped copper oxide nanoparticles synthesized via the microwave irradiation method exhibit better magnetic properties than the undoped copper oxide.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Maqusood Ahamed ◽  
Hisham A. Alhadlaq ◽  
M. A. Majeed Khan ◽  
Ponmurugan Karuppiah ◽  
Naif A. Al-Dhabi

We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs) synthesized by a very simple precipitation technique. Copper (II) acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD) pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM) and field emission transmission electron microscope (FETEM) demonstrated the morphology of CuO NPs. The average diameter of CuO NPs calculated by TEM and XRD was around 23 nm. Energy dispersive X-ray spectroscopy (EDS) spectrum and XRD pattern suggested that prepared CuO NPs were highly pure. CuO NPs showed excellent antimicrobial activity against various bacterial strains (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumonia,Enterococcus faecalis,Shigella flexneri,Salmonella typhimurium,Proteus vulgaris,andStaphylococcus aureus). Moreover,E. coliandE. faecalisexhibited the highest sensitivity to CuO NPs whileK. pneumoniawas the least sensitive. Possible mechanisms of antimicrobial activity of CuO NPs should be further investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fozia Amin ◽  
Fozia ◽  
Baharullah Khattak ◽  
Amal Alotaibi ◽  
Muhammad Qasim ◽  
...  

The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15–23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 μg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 μg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 μg/mL.


2007 ◽  
Vol 42 (1) ◽  
pp. 93-101 ◽  
Author(s):  
U. Vainio ◽  
K. Pirkkalainen ◽  
K. Kisko ◽  
G. Goerigk ◽  
N. E. Kotelnikova ◽  
...  

2011 ◽  
Vol 14 (3) ◽  
pp. 61-69
Author(s):  
Hanh Ngoc Nguyen ◽  
Thao Huu Vo

Nanoparticles of metal and metallic oxides have become a very active research area in the field of material chemistry. The surface effect is mainly responsible for deviation of the properties of nano-materials from that of the bulk. Nanosize copper oxide was synthesized by hydrolysis of copper salts in basic medium using biodegradable non-ionic polymer polyethylene glycol (PEG) as surface active agent The X-ray powder diffraction patterns (XRD) present typical peaks of copper oxides formed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images determined the shape and the nanosizes of the particles of about 10-30nm. The results exhibited the role of intermediate nanosize copper hydroxide species on the formation of copper oxide nanoparticles. The influence of synthesis temperature, reaction time, calcination temperature, etc. was studied.


Sign in / Sign up

Export Citation Format

Share Document