scholarly journals Revisión de Modelos Hiperelásticos utilizados en Tejidos

2018 ◽  
Vol 3 (1) ◽  
pp. 100
Author(s):  
Miguel Moreno ◽  
Carlos Plazaola ◽  
Guadalupe González ◽  
Mayteé Zambrano ◽  
Carmenza Spadafora

This work is related to the hyperelastic models most used in soft tissue. The importance of obtaining accurate mechanical properties of tissues are of great interest for various medical applications, for example: in treatment of diseases and surgical simulations in real time. The aim of this literature review is to evaluate the models used for proposing a mathematical formulation and modelling the mechanical behaviour of a sequence of layers of soft tissues and your reply to undergo external actions of mechanical nature, in order to improve the techniques of characterization of soft tissues.Keywords: Biomechanical, Hyperelasticity, Mechanical Properties, Nonlinear elasticity, Soft Tissues.

2016 ◽  
Vol 16 (08) ◽  
pp. 1640019 ◽  
Author(s):  
JAEHYUN SHIN ◽  
YONGMIN ZHONG ◽  
JULIAN SMITH ◽  
CHENGFAN GU

Dynamic soft tissue characterization is of importance to robotic-assisted minimally invasive surgery. The traditional linear regression method is unsuited to handle the non-linear Hunt–Crossley (HC) model and its linearization process involves a linearization error. This paper presents a new non-linear estimation method for dynamic characterization of mechanical properties of soft tissues. In order to deal with non-linear and dynamic conditions involved in soft tissue characterization, this method improves the non-linearity and dynamics of the HC model by treating parameter [Formula: see text] as independent variable. Based on this, an unscented Kalman filter is developed for online estimation of soft tissue parameters. Simulations and comparison analysis demonstrate that the proposed method is able to estimate mechanical parameters for both homogeneous tissues and heterogeneous and multi-layer tissues, and the achieved performance is much better than that of the linear regression method.


Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


Author(s):  
Ming Jia ◽  
Jean W. Zu ◽  
Alireza Hariri

Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID’s working principle and the experimental study of TRID’s reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well. The experimental results show that TRID is a reliable device for in-vivo measurements of soft tissue mechanical properties.


Author(s):  
Xiaodong Zhao ◽  
Baoxiang Shan ◽  
Assimina A. Pelegri

An integrated system is built to model and simulate the dynamic response of soft tissues. The mathematical formulation employs finite element and model order reduction approaches to develop a state space model for soft tissues that allows for time-efficient numerical analysis. The stimulus device and signal processing routines are built in Matlab/Simulink and then integrated with the finite element state space model. This integrated system facilitates expeditious numerical evaluation of different soft tissue models subjected to dynamic excitation. It further elucidates the effect of different stimulus sources, as well as relative influences of different sources of uncertainty.


2016 ◽  
Vol 16 (08) ◽  
pp. 1640016 ◽  
Author(s):  
JING YANG ◽  
LINGTAO YU ◽  
LAN WANG ◽  
HONGYANG LI ◽  
QI AN

In recent years, virtual surgical simulation has been one of the hot direction of digital medical research, it is mainly used in teaching, training, diagnosis, preoperative planning, rehabilitation and modeling and analysis of surgical instruments. The modeling of soft tissue of human organs is the basis to realize the virtual surgical simulation. The quasi-linear viscoelastic (QLV) theory has been proposed by Fung, and it was widely used for modeling the constitutive equation of soft tissues. The purpose of this study is to determine the mechanical characterization of the liver soft tissue based on the PHANTOM Omni Haptic devices. Five parameters are included in the constitutive equation with QLV theory, which must be determined experimentally. The specimens were obtained from fresh porcine liver tissues in vitro. The liver tissues were cut into 14[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]14[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]14[Formula: see text]mm cubes. Two types of unconfined compression tests were performed on cube liver specimens. Puncture tests were performed on the complete liver. The material parameters of the QLV constitutive equation were obtained by fitting the experimental data. These parameters will provide the references for the computational modeling of the liver in the virtual surgical simulation.


2007 ◽  
Vol 334-335 ◽  
pp. 133-136
Author(s):  
Hang Yin Ling ◽  
P. Carrie Choi ◽  
Y.P. Zheng ◽  
Alan Kin Tak Lau

This paper demonstrates the use of ultrasound (US) indentation technique for estimating the mechanical properties of tissue- mimicking phantom composites. A tissue-mimicking phantom composite is used to simulate two-layer soft tissue in human. Investigation on the mechanical properties of the phantom composites is extremely important for the understanding of the viscoelastic behaviours of soft tissues and the validation of our proposed US indentation system. The hand-held indentation probe embedded with a US transducer and a load cell together with a US pulser/ receiver. The output of the whole indentation process can be illustrated as force-deformation curves. The mechanical properties of the phantom composites can be estimated by analyzing the force-deformation curves using genetic algorithm (GA).


2021 ◽  
Vol 9 (39) ◽  
pp. 8348-8354
Author(s):  
Yaming Wang ◽  
Masahiro Okada ◽  
Shi Chao Xie ◽  
Yu Yang Jiao ◽  
Emilio Satoshi Hara ◽  
...  

A metallic solid-state adhesive for biological soft tissues was fabricated using Ti–6Al–4V alloys, and the influence of the minor β phase and the small amount of Al in the α phase are reported.


RSC Advances ◽  
2014 ◽  
Vol 4 (60) ◽  
pp. 32017-32023 ◽  
Author(s):  
Adrien Leroy ◽  
Assala Al Samad ◽  
Xavier Garric ◽  
Sylvie Hunger ◽  
Danièle Noël ◽  
...  

Degradable and biocompatible networks have been prepared via thiol–yne photochemistry from novel alkyne multifunctional PCL. The mechanical properties of these cross-linked biomaterials could make them good candidates for soft tissues scaffolds.


2012 ◽  
Vol 529-530 ◽  
pp. 421-425
Author(s):  
Edirlaine Soares Silva ◽  
Deny Gomes de Freitas ◽  
Sidney Nicodemos da Silva

Dermal fillers are injectable implants made of biological materials (collagen, autologous fat and hyaluronic acid animal) or synthetic (PMMA microparticles of hydroxyapatite and non-animal hyaluronic acid), biodegradable or not, that include features such as ideal biocompatibility, durability, non-profile migration and ability to promote a smooth, natural-looking correction. Its main indication is intended to treat contour defects caused by aging, photo damage, disease, trauma or scarification. The fact of biodegradable fillers are absorbed within a year after application resulted in the emergence of products permanent and semi-permanent to offer patients long-lasting effects. Currently, one of the most effective strategies has been the development of scaffolds formed by combining two or more biomaterials seeking the restoration of tissue function. The bioceramic associated with water-soluble polymers have been developed as substitutes for the repair of soft tissues with optimal biological response. The objective of this study was to process and characterize a composite hydrogel in the form of hyaluronic acid (HA) microspheres and biphasic calcium phosphate (BCP) in order injectable applications for repair of soft tissue. The powders of HA and BCP were characterized by Infrared Spectroscopy Fourier Transform (FTIR) and X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The characterization of the hydrogel injectability pure and the composite with different ratios of HA and BCP was performed. The components were characterized compatible for use as dermal fillers. The composite of hyaluronic acid (HA) and biphasic calcium phosphate (BCP) had adequate characterization and injetabilidade proving to be a potential candidate for restoration of soft tissue.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850037 ◽  
Author(s):  
SEYED ALI ELAHI ◽  
NATHANAEL CONNESSON ◽  
YOHAN PAYAN

In-vivo characterization of soft tissues is a key step toward biomechanical simulation and planning of intra-operative assisted surgery. To achieve this, aspiration method is a standard technique: tissue is aspirated through a hole while measuring the pressure and associated apex height. An inverse problem is then solved to identify the material mechanical properties. In the literature, the apex height is usually measured using a camera, which induces design difficulties, in particular in regards on the required sterilization process for in-vivo measurements. In this paper, the idea is to replace the apex height optical measurement by the measurement of the aspirated tissue volume. The proposed method enables to reduce the system head to a simple tube: sterilizations becomes easy and the system is disposable after use. The proposed system is thus the simplest, lightest and cheapest one could achieve. It is also to the authors knowledge the first time ever in aspiration method that the aspired volume is the extracted data. As the data signal-to-noise ratio is the main factor impacting any applied inverse method when extracting the mechanical properties, the aim of this work is to assess and compare the experimental signal-to-noise ratio in the raw volume measurements obtained either optically or with the method proposed. Explicit results of inverse methods using volumes as input data are not presented in this paper for concision purpose. The effects on accuracy of various experimental parameters has been investigated and quantified: the volume measurement has proved to present a same order or even better signal-to-noise ratio compared to optical measurements.


Sign in / Sign up

Export Citation Format

Share Document