The Bond Strength on Over Lapping Bars Using Pullout Test

Author(s):  
Anis Rosyidah ◽  
J. Adhijoso Tjondro ◽  
I Ketut Sucita
Keyword(s):  
Author(s):  
Shubham N. Dadgal ◽  
Shrikant Solanke

In modern days for structures in coastal areas it has been observed that the premature structural failures are occurs due to corrosion of the reinforcements of the designed structural member. The corrosion causes the structural damage which in turn leads to reduction in the bearing capacity of the concerned structural members. The aim of this study was to study the effect of partial replacement of fly ash to minimize the corrosion effect. Beams were designed and corroded by using artificial method known accelerated corrosion method. The beams were then tested for flexural and bond strength. Also the weight loss of the reinforced bars was been determined using electrical resistivity method. The fly ash will replace by 10% and 15%.The strength will calculate at varying percentage of corrosion at 10% and 15%. Beams will cast at M25 grade concrete. The flexural strength will test by using UTM and the bond strength will calculate using pullout test.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
Konstantinos Tsiotsias ◽  
Stavroula J. Pantazopoulou

Experimental procedures used for the study of reinforcement to concrete bond have been hampered for a long time by inconsistencies and large differences in the obtained behavior, such as bond strength and mode of failure, depending on the specimen form and setup used in the test. Bond is controlled by the mechanics of the interface between reinforcement and concrete, and is sensitive to the influences of extraneous factors, several of which underlie, but are not accounted for, in conventional pullout test setups. To understand and illustrate the importance of specimen form and testing arrangement, a series of computational simulations are used in the present work on eight distinct variants of conventional bar pullout test setups that are used routinely in experimental literature for the characterization of bond-slip laws. The resulting bond strength increase generated by unaccounted confining stress fields that arise around the bar because of the boundary conditions of the test setup is used to classify the tests with respect to their relevance with the intended use of the results. Of the pullout setups examined, the direct tension pullout test produced the most conservative bond strength results, completely eliminating the contributions from eccentricity and passive confinement.


2021 ◽  
Author(s):  
Zahir Aldulaymi

This research program consists of laboratory study of corrosion phenomenon in reinforced concrete and further analytical study of the experimental results obtained by Amleh (2000). The laboratory study examined the influence of increasing levels of corrosion on the progressive deterioration of bond between the steel and concrete and determined the extent to which the various water to cement (w/c) ratio in concrete mixtures influence the corrosion of the steel reinforcement as well as the chloride ion penetration. The influence of corrosion on the bond characteristics of the reinforcing bars in pullout test specimens made with two different w/c ratios and two different concrete cover thicknesses were investigated using control specimens to study the effect of the concrete cover ratio and the concrete compressive strength. The two w/c ratios were 0.47 and 0.37, with two concrete cover thicknesses of 40 mm and 65 mm. Hence, the effect of w/c ratio on different parameters like rate of corrosion, compressive strength and the effect of concrete cover thickness on the corrosion rate were studied. An accelerated electrochemical corrosion procedure was used to develop four levels of corrosion including no corrosion to complete corrosion, with over 25 percent steel bar weight loss due to corrosion, with wide longitudinal cracks. This research study clearly indicated that the bond stress-slip response of the embedded bar in the pullout specimen, was adversely affected by the width of the crack, and the level of corrosion. The crack width was found to develop faster and longer in specimens with lower compressive strength and as a result the maximum bond strength in the pullout test is affected signifcantly by the number and size of cracks, and thus, the level of corrosion. For a given crack width due to corrosion, it is observed that the available bond strength is higher for larger concrete cover thicknesses than for smaller cover thicknesses. Certainly, the quality of concrete in terms of its permeability is equally important for the corrision protection. A relationship between the effect of w/c ratio on chloride ingress was developed to count for the deterioration in bond stress, and the induced current used in corroding the speciments of Amleh (2000) and of this investigation program were incorporated to consider for the lack of chloride lot content measured due to the shorter immersing time in this investigation and the high current used to force the specimens to corrode in the accelerated corrosion process.


2021 ◽  
Author(s):  
Zahir Aldulaymi

This research program consists of laboratory study of corrosion phenomenon in reinforced concrete and further analytical study of the experimental results obtained by Amleh (2000). The laboratory study examined the influence of increasing levels of corrosion on the progressive deterioration of bond between the steel and concrete and determined the extent to which the various water to cement (w/c) ratio in concrete mixtures influence the corrosion of the steel reinforcement as well as the chloride ion penetration. The influence of corrosion on the bond characteristics of the reinforcing bars in pullout test specimens made with two different w/c ratios and two different concrete cover thicknesses were investigated using control specimens to study the effect of the concrete cover ratio and the concrete compressive strength. The two w/c ratios were 0.47 and 0.37, with two concrete cover thicknesses of 40 mm and 65 mm. Hence, the effect of w/c ratio on different parameters like rate of corrosion, compressive strength and the effect of concrete cover thickness on the corrosion rate were studied. An accelerated electrochemical corrosion procedure was used to develop four levels of corrosion including no corrosion to complete corrosion, with over 25 percent steel bar weight loss due to corrosion, with wide longitudinal cracks. This research study clearly indicated that the bond stress-slip response of the embedded bar in the pullout specimen, was adversely affected by the width of the crack, and the level of corrosion. The crack width was found to develop faster and longer in specimens with lower compressive strength and as a result the maximum bond strength in the pullout test is affected signifcantly by the number and size of cracks, and thus, the level of corrosion. For a given crack width due to corrosion, it is observed that the available bond strength is higher for larger concrete cover thicknesses than for smaller cover thicknesses. Certainly, the quality of concrete in terms of its permeability is equally important for the corrision protection. A relationship between the effect of w/c ratio on chloride ingress was developed to count for the deterioration in bond stress, and the induced current used in corroding the speciments of Amleh (2000) and of this investigation program were incorporated to consider for the lack of chloride lot content measured due to the shorter immersing time in this investigation and the high current used to force the specimens to corrode in the accelerated corrosion process.


2013 ◽  
Vol 723 ◽  
pp. 237-244
Author(s):  
Jin Lei

The deck of cement concrete bridge and the interface of asphalt pavement, and these two combined items have a direct effect on the useful life of asphalt pavement. According to the indoor shear test and pullout test, we could learn that the interlayer shear strength and the bond strength are strongly affected by temperature, and it is decreased with increasing test temperature. The pullout test analyses the variation regularity of bond strength between four adhesive layers and bridge panel at different temperatures, which proves that the bond strength is also decreased with increasing test temperature. The research suggests that the shear test and pullout test is worthy of evaluating the interface performance between deck and asphalt pavement under the high stability and low temperature conditions.


2019 ◽  
Vol 5 (3) ◽  
pp. 679
Author(s):  
Balamuralikrishnan R. ◽  
Saravanan J.

Plenty of research works in India and abroad focusing on the reuse or recycling of waste materials from many industries. Among that finding out suitable cementitious material for the replacement of cement is significant. Many waste materials such as fly ash, silica fume, GGBS, metakaoline, micro materials, quartz power, etc. are tried out for replacing partially or full of cement in concrete. A new ultrafine material called Alccofine is tried out for replacing partially in this research. M20 and M60 grade of concrete is intended to study the performance of normal and high strength concrete by replacing the cement with alccofine of different dosages.  Previous researches showed that the replacement of alccofine increases the strength. Design mix made for M20 and M60 grade and cubes casted with various percentage of alccofine with cement. Hence the study is aimed to assess the bond behavior of M20 and M60 grade of concrete structures as an alternate to the conventional materials. The cubes are prepared initially for the design mix and determined the strength of concrete. Then specimens are prepared for the bond test and tested using pullout test methods. The results are analyzed and observed that the bond strength is increased with increase of alccofine replacement to certain dosage. 


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Anis Rosyidah ◽  
Johannes Adhijoso Tjondro ◽  
I Ketut Sucita

This experiment's objective is to prove that the reinforcing rib's form contributes to its bond strength. The specimen is the concrete cubes measuring 150 × 150 × 150 mm; bar installed in the center of the concrete cube. Bars use 13, 16, and 19 mm diameters. For comparison, the experiment was also carried out on plain reinforcement diameter with 12 mm, 16 mm, and 19 mm. Concrete compression is fc' 34 MPa. The pullout test was also performed to increase the load in stages at a 200 kg/minute speed. Loading stopped if the reinforcement yielded, split concrete, or slipped bar. The experiment uses ASTM standards ASTM C234-91a. The study results are the bond strength on reinforcement with the surrounding concrete. Bond strength in the plain bar is lower than deformed. The reinforcement of steep rib compared to fishbone bond strength values incline to be the same. The ratio of the bond strength of plain compared to deformed is 15% - 18%. The bond index of the steep rib and fishbone rib between 0.11 - 0.16 so that the bond stress obtained is also relatively the same. The failure pattern that occurs is determined based on the bond stress-slip graph. There are two types of collapse in this experiment, namely pullout and splitting damage. The failure of each specimen based on the diameter and shape of the rib varies greatly. The splitting damage is seen visually only in the specimen of the D19 fishbone rib.


Sign in / Sign up

Export Citation Format

Share Document