scholarly journals POTENTIOMETRIC STUDY OF KINETICS AND MECHANISM FORMATION OF SILVER NANOPARTICLES STABILIZED BY SYNTHETIC FULVATES

2021 ◽  
Vol 26 (3(79)) ◽  
pp. 63-76
Author(s):  
V. A. Litvin ◽  
Y. S. Smetenko ◽  
I. O. Ozivska

Silver nanoparticles are actively studied due to their unique properties and wide use in various fields. In this study, silver nanoparticles were obtained by reacting Ag+ ions with synthetic fulvic acids derived from quercetin. Synthetic fulvic acids perform a dual function: a reducer of silver ions and a stabilizer of the formed nanoparticles The presence of silver nanoparticles in the solution is confirmed by the presence of a maximum in the absorption spectrum at 400 nm, which is due to the phenomenon of surface plasmon resonance. The parameters of the crystal lattice were established using the X‑ray diffraction method. The average nanoparticle size calculated by the Scherrer formula is 28 nm. The kinetics and mechanism formation of silver nanoparticles were studied by potentiometry, which allows direct and continuous control of the consumption of silver ions in the synthesis process. It is established that the mechanism of the process depends on the pH of the medium. In particular, at high pH values of the reaction medium there is a heterogeneous mechanism, while at low – homogeneous. The heterogeneous mechanism of formation of silver nanoparticles is characterized by the presence of three stages, in particular: 1) formation of Ag2O microparticles after mixing reagents, 2) reduction of Ag+ ions by synthetic fulvic acids from quercetin on the surface of formed Ag2O microparticles, which are heterogeneous nucleation centers. 3) reduction of Ag+ ions from solution on the surface of silver nanoparticles after complete dissolution of Ag2O microparticles (this process is described by first-order kinetics by Ag+). Activation parameters for different stages of silver nanoparticle formation using quercetin fulvic acids were calculated. A potentiometric study of the influence of the degree of aeration of the medium on the kinetics of changes in the pAg system was performed.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Vanaja ◽  
K. Paulkumar ◽  
M. Baburaja ◽  
S. Rajeshkumar ◽  
G. Gnanajobitha ◽  
...  

Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by usingMorinda tinctorialeaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.


2017 ◽  
Vol 24 (10) ◽  
pp. 9229-9240 ◽  
Author(s):  
Nguyen Thanh Giao ◽  
Tawan Limpiyakorn ◽  
Pattaraporn Kunapongkiti ◽  
Pumis Thuptimdang ◽  
Sumana Siripattanakul-Ratpukdi

Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


2021 ◽  
pp. 1-14
Author(s):  
N.U.H. Altaf ◽  
M.Y. Naz ◽  
S. Shukrullah ◽  
H.N. Bhatti

In this study, silver nanoparticles (AgNPs) were produced through an atmospheric pressure plasma reduction reaction and tested for photodegradation of methyl blue (MB) under sunlight exposure. The argon plasma born reactive species were used to reduce silver ions to AgNPs in the solution. Glucose, fructose and sucrose were also added in the solution to stabilize the growth process. The glucose stabilized reaction produced the smallest nanoparticles of 12 nm, while sucrose stabilized reaction produced relatively larger nanoparticles (14 nm). The nanoparticles exhibited rough morphology and narrow diameter distribution regardless of stabilizer type. The narrow diameter distribution and small band gap helped activating majority of nanoparticles at a single wavelength of light spectrum. The band gap energy of AgNPs varied from 2.22 eV to 2.41 eV, depending on the saccharide type. The photoluminescence spectroscopy of AgNPs produced emission peaks at 413 nm, 415 nm, and 418 nm. The photocatalytic potential of AgNP samples was checked by degrading MB dye under sunlight. The degradation reaction reached a saturation level of 98% after 60 min of light exposure.


2021 ◽  
Vol 359 ◽  
pp. 129859
Author(s):  
Li Wang ◽  
Govindasami Periyasami ◽  
Ali Aldalbahi ◽  
Vincenzo Fogliano

2017 ◽  
Vol 137 ◽  
pp. 18-28 ◽  
Author(s):  
Petra Cvjetko ◽  
Anita Milošić ◽  
Ana-Marija Domijan ◽  
Ivana Vinković Vrček ◽  
Sonja Tolić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document