scholarly journals ANALYSIS OF NEW POLYFLUOROTHIOACYLATED AMINO ACIDS DERIVATIVES BY IN SILICO AND IN VITRO METHODS

2017 ◽  
Vol 0 (4(40)) ◽  
pp. 21-31
Author(s):  
К. C. Науменко ◽  
A. В. Головань ◽  
Г. В. Баранова ◽  
Ю. Г. Шермолович ◽  
Н. В. Пікун ◽  
...  
2021 ◽  
pp. 105300
Author(s):  
Jâmeson Ferreira da Silva ◽  
Dione Silva Corrêa ◽  
Érico Leite Campos ◽  
Giovana Zamprônio Leite ◽  
João Denis Medeiros de Oliveira ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 95-105 ◽  
Author(s):  
Sivakumar Prasanth Kumar ◽  
Vilas R. Parmar ◽  
Yogesh T. Jasrai ◽  
Himanshu A. Pandya

2021 ◽  
Vol 13 (4) ◽  
pp. 142-147
Author(s):  
Behin Omidi ◽  
Yasin SarveAhrabi

Background: The need to replace new drug structures for the treatment of resistant strains has become essential. Streptococcus mutans is one of the most important factors in causing tooth decay. Glucan binding protein-C (Gbp-C) is a crucial mobileular floor protein that is worried in biofilm formation, and 1, 3, 4-oxadiazoles are new antibacterial structures. Accordingly, this study focused on assessing in vitro and in silico activity of our previously synthesized compounds of 1, 3, 4-oxadiazole against S. mutans. Methods: To this end, our previously synthesized derivatives were re-synthesized and prepared, and then antibacterial susceptibility tests were used for inhibition zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) test values. The molecular docking method was also applied to confirm the effect of compounds in interaction with the Gbp-C of S. mutans. Results: All compounds showed different effects against the bacterial sample. Among these, the most effective ones were related to naphthalene (4d), fluorophenyl (4e), and dimethoxyphenyl (4h) derivatives against S. mutans, respectively. Other compounds also had antibacterial properties but to a lesser extent. In the molecular part, compounds 4d and 4h had the highest affinity to inhibit the GbpC-protein. compound 4d with amino acids ASP and GLN established 402 and 391 hydrogen bonds, respectively, and compound 4h with amino acids SER, GLU, THR, and TRP established 347, 360, 449, and 451 hydrogen bonds, respectively. Conclusions: In general, 1, 3, 4-oxadiazoles containing naphthalene and dimethoxy phenyl functional groups in high concentrations can be good alternatives to the existing drugs for eliminating caries-causing tooth mutants that have drug resistance. It seems that more inhibitory effects can be observed on clinical specimens by adding different purposeful groups and increasing the destructive power of oxadiazole-based compounds.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4930
Author(s):  
Jonathan Dauvé ◽  
Nicolas Belloy ◽  
Romain Rivet ◽  
Nicolas Etique ◽  
Pierre Nizet ◽  
...  

Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), displays anti-tumor properties through its direct interaction with MMP-14. Lumican-derived peptides, such as lumcorin (17 amino acids) or L9M (10 amino acids), are able to inhibit the proteolytic activity of MMP-14 and melanoma progression. This work aimed to visualize the interactions of lumican-derived peptides and MMP-14. Molecular modeling was used to characterize the interactions between lumican-derived peptides, such as lumcorin, L9M, and cyclic L9M (L9Mc, 12 amino acids), and MMP-14. The interaction of L9Mc with MMP-14 was preferential with the MT-Loop domain while lumcorin interacted more with the catalytic site. Key residues in the MMP-14 amino acid sequence were highlighted for the interaction between the inhibitory SLRP-derived peptides and MMP-14. In order to validate the in silico data, MMP-14 activity and migration assays were performed using murine B16F1 and human HT-144 melanoma cells. In contrast to the HT-144 melanoma cell line, L9Mc significantly inhibited the migration of B16F1 cells and the activity of MMP-14 but with less efficacy than lumican and lumcorin. L9Mc significantly inhibited the proliferation of B16F1 but not of HT-144 cells in vitro and primary melanoma tumor growth in vivo. Thus, the site of interaction between the domains of MMP-14 and lumcorin or L9Mc were different, which might explain the differences in the inhibitory effect of MMP-14 activity. Altogether, the biological assays validated the prediction of the in silico study. Possible and feasible improvements include molecular dynamics results.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1831
Author(s):  
Jelisaveta Ignjatović ◽  
Tijana Šušteršič ◽  
Aleksandar Bodić ◽  
Sandra Cvijić ◽  
Jelena Đuriš ◽  
...  

In vitro assessment of dry powders for inhalation (DPIs) aerodynamic performance is an inevitable test in DPI development. However, contemporary trends in drug development also implicate the use of in silico methods, e.g., computational fluid dynamics (CFD) coupled with discrete phase modeling (DPM). The aim of this study was to compare the designed CFD-DPM outcomes with the results of three in vitro methods for aerodynamic assessment of solid lipid microparticle DPIs. The model was able to simulate particle-to-wall sticking and estimate fractions of particles that stick or bounce off the inhaler’s wall; however, we observed notable differences between the in silico and in vitro results. The predicted emitted fractions (EFs) were comparable to the in vitro determined EFs, whereas the predicted fine particle fractions (FPFs) were generally lower than the corresponding in vitro values. In addition, CFD-DPM predicted higher mass median aerodynamic diameter (MMAD) in comparison to the in vitro values. The outcomes of different in vitro methods also diverged, implying that these methods are not interchangeable. Overall, our results support the utility of CFD-DPM in the DPI development, but highlight the need for additional improvements in these models to capture all the key processes influencing aerodynamic performance of specific DPIs.


Author(s):  
Govindappa M ◽  
Channabasava ◽  
Ritu Pawar ◽  
Chandrasekhar Srinivasa ◽  
Chandan Shivamallu ◽  
...  

The present investigation was aimed to know the coumarins in the methanol extract of endophytic fungi, Penicillium species BCt isolated from Calophyllum tomentosum bark tissues using qualitative and GC-MS analysis. The endophytic extract was evaluated for anti-HIV activity on three replicating enzymes in vitro and in silico. The methanol extract of Penicillium species confirmed the presence of coumarins in four qualitative methods and yielded four different types of coumarins in GC-MS. In GC-MS analysis, totally seven different phytochemicals were identified based on retention time and compared with available library data. The four coumarins are coumarin (2H-1-benzopyran-2-one), coumaric acid (3-benzofuran-carboxylic acid), hynecromone (coumarin 4), 4-hydroxy-9-(3-methyl-2-butyl) furo (3,2-g) chloronen-7-one) and other three are common phytochemicals. The HIV-1 RT (98) was strongly inhibited by the endophytic fungal extract compared to integrase (118) and protease (158) in vitro analysis. Highest inhibition of integrase was observed with coumarilic acid (-17.62) when attached to Glu-35, Asn-38, Ser-39 amino acids. The protease was inhibited strongly by hymecromone (-16.39) when attached to amino acids of Val-77, Glu-34, Pro-79, Gly-78. The inhibition of RT was observed with coumarilic acid by attaching to Ala-445, Arg-567, Asp-456, Glu-478, Ser-499, Asn-474 (-23.54) significantly. Based on above results, the endophytic fungal coumarins have the ability to inhibit the three replicating enzymes of HIV-1 significantly. The in-silico results are evidence for how coumarins inhibiting the HIV replicating proteins by binding at specific amino acids. The results will help to understand how and where phytochemicals bind to target proteins to inhibit their action and it may help to identification of drugs to treat HIV. To validate our results, the in vivo research is needed.   


2014 ◽  
Vol 369 (1656) ◽  
pp. 20130584 ◽  
Author(s):  
Judith C. Madden ◽  
Vera Rogiers ◽  
Mathieu Vinken

There is a long history of using both in silico and in vitro methods to predict adverse effects in humans and environmental species where toxicity data are lacking. Currently, there is a great deal of interest in applying these methods to the development of so-called ‘adverse outcome pathway’ (AOP) constructs. The AOP approach provides a framework for organizing information at the chemical and biological level, allowing evidence from both in silico and in vitro studies to be rationally combined to fill gaps in knowledge concerning toxicological events. Fundamental to this new paradigm is a greater understanding of the mechanisms of toxicity and, in particular, where these mechanisms may be conserved across taxa, such as between model animals and related wild species. This presents an opportunity to make predictions across diverse species, where empirical data are unlikely to become available as is the case for most species of wildlife.


Sign in / Sign up

Export Citation Format

Share Document