The prediction of moisture adsorption isotherm for sucrose powder in Côte d’Ivoire

Author(s):  
Yué Bi Yao Clément ◽  
Akmel Djédjro Clément ◽  
Tano Kablan

Moisture sorption isotherms play an essential role in preservation and storage of dehydrated food. To study the behavior of sucrose, it’s moisture adsorption isotherm was investigated using the static gravimetrique method at laboratory temperature (29 ±1°C) in a water activity range (aw) of 0.07-0.97. The results showed that the equilibrium moisture content of sucrose increase substantially above aw = 0.6. The moisture adsorption isotherm was sigmoid in shap, showing a type III BET isotherm. The data obtained were fitted to several models including two-parameter (BET, Hasley, Kuhn and Oswin), three parameter (GAB). A non-linear least square regression analysis was used to evaluate the models constants. The GAB model best fitted the experimental data in the wide range of water activity. The best fitted equation provide a sound basis for futur work on the drying and storage of sucrose. The accurate moisture content and the stability profile of sucrose were determined. The results of determination show that sucrose powder was stable below 7.7% RH at 29°C. The content of water adsorbed in the monomolecular layer was calculated (GAB Xm=0.950 g H2O/100 g solids; BET Xm= 1.072 g H2O/100 g solids).

2006 ◽  
Vol 12 (6) ◽  
pp. 459-465 ◽  
Author(s):  
U. Siripatrawan ◽  
P. Jantawat

Moisture sorption isotherms of Thai Jasmine rice crackers were determined at 30, 45 and 60°C over a water activity range of 0.10 to 0.95 using a static gravimetric technique. Moisture sorption isotherms of rice crackers exhibited the sigmoid (Type II) shape. The moisture content of rice crackers decreased as temperature increased at a given water activity of the storage environment. The Brunauer, Emmett and Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models were applied to fit the experimental data. The isosteric heat of sorption at different moisture levels was also determined using the Clausius–Clapeyron thermodynamic equation. A nonlinear regression analysis method was determined to evaluate the parameters of sorption equations. The criteria used to evaluate the goodness of fit of each model were the mean relative percentage deviation modulus (E) and the percentage root mean square error (RMSE). The more extended range of application of the GAB equation over the BET equation was evident. The GAB model gave the best fit to the experimental sorption data for a wide range of water activity (0.10–0.95) while the BET model gave the best fit for a water activity range of less than 0.60. The GAB model is considered suitable to predict the moisture sorption isotherm of rice crackers since it gave low E and RMSE values. The heat of sorption values of rice crackers were found to be large at low moisture content and decreased with an increase in food moisture content.


Foundations ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 32-44
Author(s):  
Zhongqi He ◽  
David Zhang ◽  
Huai N. Cheng

Due to their hygroscopic characteristics, equilibrium moisture contents of agricultural products and byproducts are important factors of their quality. Defatted cottonseed meal (CSM), washed cottonseed meal (WCSM) and cottonseed protein isolate (CSPI) can be used as energy and protein sources of animal feedstuff or industrial raw materials. Information on their moisture adsorption behaviors is needed for their storage conditions and quality control. Thus, this work measured the equilibrium moisture sorption isotherms of CSM, WCSM and CSPI, at 15, 25, 35 and 45 °C. When the moisture contents of the samples were compared at a constant temperature, the general trend of decreasing moisture content was in the order of CSPI < WCSM < CSM for water activity <0.6, but the trend reversed to the order of CSM < WCSM < CSPI for water activity >0.6. Relevant sorption isotherm equations were tested for accurate fit to the moisture adsorption data. Modelling results indicated that the G.A.B. (Guggenheim-Anderson-de Boer) model was a consistently good fit for the data among all sample types and all temperatures. This work provides some insight on designing or selecting appropriate procedures for the handling, aeration, storage and processing of these cottonseed meal products. In particular, it suggests that moisture content should be kept at around 8% for safe storage of these products at room temperature (around 25 °C) but below 5% when they are exposed to higher temperature conditions (e.g., >45 °C).


2020 ◽  
Vol 21 (4) ◽  
pp. 11-20
Author(s):  
Maha Muhyi Alhussaini ◽  
Hassanain A. Hassan ◽  
Nada S. Ahmedzeki

   The moisture sorption isotherms of Mefenamic acid tablets were investigated by measuring the experimental equilibrium moisture content (EMC) using the static method of saturated salt solutions at three temperatures (25, 35, and 45°C) and water activity range from 0.056 to 0.8434. The results showed that EMC increased when relative humidity increased and the sorption capacity decreased, the tablets became less hygroscopic and more stable when the temperature increased at constant water activity. The sorption curves had a sigmoid shape, type II according to Brunauer’s classification. The hysteresis effect was significant along with the whole sorption process. The results were fitted to three models: Oswin, Smith, and Guggenhein - Anderson and de Boer. According to the fitting results, the GAB model was the most appropriate model to describe the sorption behavior of Mefenamic acid; it had a regression coefficient range (0.9803-0.994), %E (0.69-4.06), and low values of SEE (0.85-2.2). The monolayer moisture content was calculated using the GAB model and it was concluded that the tablets should be stored at moisture content equal or slightly higher than (0.2046, 0.1843, and 0.1437 %) for desorption and (0.2073, 0.1269, and 0.1452 %) for adsorption for the three temperatures.


Author(s):  
Banu Koç ◽  
Gamze Atar ◽  
Nazan Çağlar

In this study, the moisture adsorption isotherm of pistachio was determined at 25°C and relative humidity (10-90%), using the standard static, gravimetric method. Eleven sorption models were tested to fit the experimental data. A non-linear regression analysis method was used to evaluate the constants of the sorption equations. The GAB equation gave the best fit to the experimental data for a wide range of water activity, while BET gave the best fit for a water activity range of 0.1-0.5. The agreement between experimental and predicted values of these models was found to be satisfactory. Keywords: Moisture adsorption isotherm; Sorption model; Pistachio 


Author(s):  
André L. D. Goneli ◽  
Paulo C. Corrêa ◽  
Gabriel H. H. de Oliveira ◽  
Osvaldo Resende ◽  
Munir Mauad

ABSTRACT Sorption isotherms are of great importance in post-harvest procedures, especially for predicting drying and storage, which help to establish the final moisture content of the product under certain environmental condition. Hysteresis is a phenomenon that occurs due to the difference between adsorption and desorption curves, which aids the evaluation of chemical and microbiological deteriorations, indicating the stability of stored products. Moisture sorption isotherms of castor beans were determined and hysteresis was analyzed. Static gravimetric technique at different temperatures (25, 35, 45 and 55 ± 1 °C) was used. Saturated salt solutions in the range of 37-87% ± 2% were utilized to create the required controlled relative humidity environment. Equilibrium moisture content data were correlated by different mathematical models and the Modified Halsey model presented good adjustment for the data, according to statistical procedures. Hysteresis between adsorption and desorption isotherms is present over the range of 0.2-0.9 of water activity, regardless of the temperature. This phenomenon decreases with temperature increase.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tochukwu Samuel ◽  
J. Obeta Ugwuanyi

Garri is a creamy white or yellow starchy grit produced by roasting to gelatinization and dryness of peeled, washed, mashed, and fermented dewatered cassava roots. It is the most important product of cassava in West and Central Africa. Mean moisture content of yellow and white garri was 11.11% and 10.81% within 24 hrs of sampling from the market, increasing to 17.27% and 16.14%, respectively, following 3 months of storage at room temperature. The water activity of samples varied from initial 0.587 to 0.934 following storage. Moisture sorption isotherms, determined by static gravimetric techniques at 20° and 30°C, showed temperature dependent BET Sigmoidal type II behaviour typical of carbohydrate rich foods but modulated very slightly by the content of palm oil. Equilibrium moisture content decreased with increase in temperature at constant water activity. A total of 10 fungal species belonging to the generaMucor,Penicillium,Cephalosporium,Aspergillus,Scopulariopsis,Rhizopus, and Paecilomyceswere identified, with range increasing with water activity of samples.


2018 ◽  
Vol 16 (02) ◽  
pp. 35-42 ◽  
Author(s):  
Md Wadud Ahmed ◽  
Mohammad Gulzarul Aziz ◽  
Md Nazrul Islam

The moisture adsorption behavior is a fundamental knowledge in the processing and storage of food materials. In this paper, the experimental adsorption behavior of wheat, rice and corn flours were compared with five widely recommended adsorption models (BET, GAB, Oswin, Smith and Halsey) in the literature. From the sorption data, monolayer moisture content of wheat, rice and corn flours were estimated as per BET and GAB models. For all flours, GAB model gave higher monolayer moisture content compare to the BET model. Linear regression analysis was done to determine the model constants where all models were compared using regression coefficient and standard error of the estimate. It was observed that there is no single model that could describe accurately the sorption isotherm over the whole range of water activity (aw) and for all types of flours. BET model was found as the best model for the prediction of equilibrium moisture content (EMC) of the most stable region (i.e. EMC corresponding to aw range below 0.52) but it was not suitable at aw above 0.52. The GAB model was found to be the most suitable to predict the EMC for wide range of water activity (0.11 to 0.93). The Agriculturists 2018; 16(2) 35-42


2016 ◽  
Vol 12 (5) ◽  
pp. 469-480 ◽  
Author(s):  
Mohammad Fikry ◽  
Alhussein M. Al-Awaadh

Abstract Dynamic vapor sorption equipment (AQUADVS) was used to determine adsorption and desorption isotherms for powder rich in fiber (PRF) produced from Palm Date flesh of Sifri cultivar (Phoenix dactylifera L.) at temperatures 25, 35 and 45 °C in a wide range of water activity (0.09–0.87). Equilibrium was achieved within 29 and 25 h for the adsorption and desorption process respectively. The obtained data were fitted to ten models (Peleg, GAB, BET, Halsey, Oswin, Smith, Modified Henderson, Adam and Shove, Modified Oswin and Modified Halsey). The results indicated that the PRF followed type III behavior. The empirical Peleg model was found to be the best to represent the experimental data in the water activity range 0.09–0.87. The isosteric heat of sorption and the differential entropy decreased by increasing the moisture content and can be predicted by polynomial functions. Glass transition temperatures (Tg) of PRF were determined. The Tg decreased as the moisture content increased and can be correlated using the Gordon and Taylor model (R2=0.976). The PRF should be stored at moisture less than 9 d.b.% and temperature less than 35 °C.


Author(s):  
Zhao Yang ◽  
Enlong Zhu ◽  
Zongsheng Zhu

Abstract Moisture sorption isotherms of green soybean seeds were determined by static gravimetric method and water activity ranging from 0.11to 0.94 at 20, 30 and 40°C. The optimal sorption model of green soybean was determined by using nonlinear regression method. Modified BET multilayer sorption theory model parameters at different temperatures were calculated, isosteric sorption heat was derived by the water activity sorption isosteric model. Results indicated that sorption isotherms were belong to type III behaviour, a notable hysteresis effect was observed, Green soybean monolayer saturated sorption capacity was greater in desorption process than that of adsorption. The monolayer saturated sorption capacity decreased with increasing temperature, while the number of multilayer had a reverse trend with the monolayer saturated sorption capacity, the optimal sorption isotherm model for green soybean is Halsey model, The thermodynamic parameters including net isosteric heat of adsorption and desorption calculated at 40°C were 105.2-1865.4 kJ/kg and 111.62-1939.0 kJ/kg with equilibrium moisture content between 5% and 32% (d.b.), respectively. The net isosteric heat of sorption decreased with increasing equilibrium moisture content.


Sign in / Sign up

Export Citation Format

Share Document