scholarly journals Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage

Aging ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 3662-3681 ◽  
Author(s):  
Lin-Qing Yuan ◽  
Can Wang ◽  
Dong-Fang Lu ◽  
Xia-Di Zhao ◽  
Lin-Hua Tan ◽  
...  
Author(s):  
Silvia Mercado-Sáenz ◽  
Beatriz López-Díaz ◽  
Antonio M. Burgos-Molina ◽  
Francisco Sendra-Portero ◽  
Alejandro González-Vidal ◽  
...  

2016 ◽  
Vol 35 (12) ◽  
pp. 1319-1327 ◽  
Author(s):  
GC Santos ◽  
MR Almeida ◽  
LMG Antunes ◽  
MLP Bianchi

Bixin is a natural red pigment extracted from annatto. Although it is widely used as a coloring agent in food, there are few studies about the effect of this carotenoid on DNA. This study aimed to investigate the effects of bixin on cytotoxicity and genotoxicity induced by doxorubicin in HL60 cells. At concentrations above 0.3 μg/mL, bixin demonstrated cytotoxic effects in HL60 cells. Furthermore, this carotenoid was neither mutagenic nor genotoxic to HL60 cells and reduced the DNA damage induced by doxorubicin. Bixin and doxorubicin showed no apoptotic effect in HL60 cells, but the simultaneous combined treatments showed an increase in the percentage of apoptotic cells. In conclusion, our results showed that bixin modulates the cytotoxicity of doxorubicin via induction of apoptosis. The results of this study provide more knowledge about the toxic effects of anticancer treatments and how the natural compounds can be useful on these therapeutic approaches.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 299-299
Author(s):  
Maria Gkotzamanidou ◽  
Evangelos Terpos ◽  
Petros P. Sfikakis ◽  
Meletios Athanasios Dimopoulos ◽  
Vassilis L. Souliotis

Abstract Abstract 299 The aim of this study was to evaluate epigenetic modifications and alterations in cellular DNA damage response pathways that may be implicated in the multistep transformation of myelomagenesis. Peripheral blood mononuclear cells (PBMCs) and plasma cells from bone marrow aspirates were collected from 15 patients with MGUS (8M/7F), 22 with asymptomatic MM (AMM; 10M/12F), 41 patients with symptomatic MM (16M/25F) who underwent autologous stem cell transplantation as part of their first line therapy, and 12 healthy volunteers (7M/5F; only PBMCs). Epigenetics (chromatin condensation, transcription activity) and DNA damage response pathways (melphalan-induced DNA damage formation/repair in four genomic loci including beta-actin, p53, N-ras and delta-globin genes, accumulation of p53 protein and induction of apoptosis) were evaluated. In both PBMCs and plasma cells and in all genomic regions analyzed, significant differences in the local chromatin looseness between the different groups of patients were observed: healthy volunteers<MGUS<AMM<MM (p<0.02 for all comparisons). In PBMCs and plasma cells from all subjects, beta-actin, p53 and N-ras genes were transcriptionally active, while delta-globin gene was silent in all samples from healthy volunteers and MGUS patients. Notably, an induction of the transcription activity of delta-globin gene was found in 10/22 (45.5%) of AMM and 32/41 (78%) of symptomatic MM patients. Following a 5-min treatment of PBMCs with 100μg/ml melphalan or plasma cells with 35μg/ml, the efficiency of DNA damage repair inside all genes analysed was in accordance with that of chromatin condensation and gene expression efficiency at the same genomic loci: healthy volunteers<MGUS<AMM<MM (p<0.04 for all comparisons). In particular, in the N-ras gene, PBMCs from healthy volunteers showed 128.6±38.6 adducts/106 nucleotides, from MGUS patients 114.3±26.7 adducts/106nucleotides, from AMM 96.7±20.9 adducts/106nucleotides, and from symptomatic MM patients 56.6±27.2 adducts/106nucleotides. Similarly, plasma cells from MGUS patients showed 95.7±25.0 adducts/106nucleotides, from AMM patients 70.3±21.9 adducts/106nucleotides, and from symptomatic MM patients 32.3±10.2 adducts/106nucleotides. There was a strong correlation for the DNA damage repair data between PBMCs and plasma cells from the same individuals (R2=0.60, p<0.001). Moreover, following a 5-min exposure of PBMCs and plasma cells with various doses of melphalan (0–120μg/ml), we found that PBMCs from healthy volunteers showed evidence of p53 protein accumulation at melphalan doses as low as 17.9±8.7 μg/ml, from MGUS patients at 29.7±12.5 μg/ml, from AMM patients at 65.6±23.8 μg/ml, and from symptomatic MM patients at 100.2±29.7 μg/ml. Plasma cells from MGUS patients showed evidence of p53 protein accumulation at melphalan doses as low as 20.2±8.9 μg/ml, from AMM patients at 35.2±14.3 μg/ml, while from symptomatic MM patients at 55.3±23.1 μg/ml (p<0.02 for all comparisons). Linear association for the p53 results between PBMCs and plasma cells from the same individuals was observed (R2=0.65, p<0.001). Also, PBMCs and plasma cells were treated with various doses of melphalan (0–120 μg/ml) for 5 min, and the induction of apoptosis was measured 24h later. In accordance with the p53 data, PBMCs from healthy volunteers showed evidence of induction of apoptosis at melphalan doses as low as 13.2±6.9 μg/ml, from MGUS patients at 20.6±10.8 μg/ml, from AMM patients at 51.4±20.3 μg/ml, and from symptomatic MM patients at 89.7±25.1 μg/ml. Plasma cells from MGUS patients showed induction of apoptosis at melphalan doses as low as 9.9±2.9 μg/ml, from AMM patients at 25.3±8.5 μg/ml, and from symptomatic MM patients at 45.2±19.4 μg/ml (p<0.01 for all comparisons). For apoptosis data, a strong correlation was also found between PBMCs and plasma cells from the same individuals (R2=0.61, p<0.001). In conclusion, our data indicate that myelomagenesis is associated with epigenetic alterations and modifications in the cellular DNA damage response pathways that can be used as novel molecular biomarkers for early diagnosis and prediction of clinical outcome in MM. Furthermore, in all end-points examined, a strong association between PBMCs and plasma cells from the same individuals was observed, suggesting that measurement of these novel molecular biomarkers can be performed in a readily accessible tissue such as PBMCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1276-1276 ◽  
Author(s):  
Andrea Ghelli Luserna Di Rora ◽  
Ilaria Iacobucci ◽  
Neil Beeharry ◽  
Simona Soverini ◽  
Cristina Papayannidis ◽  
...  

Abstract Due to inadequate treatments, the survival rate of adult Acute Lymphoblastic Leukemia (ALL) patients with the exclusion of patients with particular genetic alterations, like the Philadelphia positive patients, is still very low. Moreover even the rate of patient that responds to specific treatment develops relapses during their life. Thus there is a need to improve the efficacy of conventional therapy and to discover novel specific targets. In eukaryotic cells Wee1, ATR/Chk1 and ATM/Chk2 are three pathways involved in cell cycle regulation, DNA damages response and DNA repair. Wee1 is a checkpoint kinase, involved mainly in the regulation of G2/M transition through the inhibitory phosphorylation of both Cyclin-dependent kinase 1 (CDK1) and 2 (CDK2) respectively. This study evaluates the effectiveness of MK-1775, a selective Wee1 inhibitor, as a monotherapy and as chemosensitizer agent for the treatment of B-/T-Acute Lymphoblastic Leukemia. Human B (BV-173, SUPB-15, NALM-6, NALM-19 and REH) and T (MOLT-4, RPMI-8402 and CEM) ALL cell lines were tested in this study. MK-1775 alone strongly reduced the cell viability in a dose and time-dependent manner in all the cell lines treated. The anti-proliferative activity of MK-1775 was accompanied by an increase in apoptotic cells (AnnexinV/Pi staining) and by DNA damage markers (gH2AX and Parp-1 cleavage). Moreover the inhibition of Wee1 disrupted the cell cycle profile by arresting the cells in late S and in G2/M phase. We hypothesized that targeting Chk1, a kinase upstream, of Wee1, would be more effective in reducing cell proliferation. Indeed, the concomitant inhibition of Chk1 and Wee1 kinases, using the PF-0477736 in combination with MK-1775, synergized in the reduction of the cell viability, inhibition of the proliferation index and induction of apoptosis. Moreover the immunofluorescence staining for the DNA damage marker gH2AX and the mitotic marker phosphor-Histone H3 showed that co-treatment with MK-1775 and PF-0477736 induced cell death by mitotic catastrophe. We undertook further studies to understand the immediate clinical potential of the compound, thus MK-1775 was combined with different drugs (Clofarabine, Bosutinib Authentic, and a particular isomer of this compound).The combination between MK-1775 and clofarabine showed an additive effect in terms of reduction of the cell viability and induction of apoptosis. Finally the Wee1 inhibitor was combined with the tyrosine kinase inhibitors Bosutinib and Bos-isomer (Bos-I). Both the isomers in combination with MK-1775 showed an additive effect in term of reduction of the cell viability. Interestedly the cytotoxic effect of Bos-I was stronger on the Philadelphia-negative cell lines in comparison to the positive counterpart. Western blot analysis highlighted that this compound, but not the Bosutinib authentic, interfered with the Chk1/Chk2 and Wee1 pathway. This supported our previous studies showing that Bosutinib and its isomer possess off-target effects against both Wee1 and Chk1 kinases and thus maybe used as a chemosensitizer (Beeharry et al. Cell Cycle 2014). The results of this study in our opinion identify the Wee1 kinase as a promising target for the treatment of ALL not only as a monotherapy but also as chemosensitizer agent to increase the cytotoxicity of different kind of drugs already used in clinical trials. Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Martinelli:Novartis: Consultancy, Speakers Bureau; Ariad: Consultancy; AMGEN: Consultancy; ROCHE: Consultancy; BMS: Consultancy, Speakers Bureau; MSD: Consultancy; Pfizer: Consultancy.


DNA Repair ◽  
2016 ◽  
Vol 37 ◽  
pp. 1-11 ◽  
Author(s):  
Raafat A. El-Awady ◽  
Mohammad H. Semreen ◽  
Maha M. Saber-Ayad ◽  
Farhan Cyprian ◽  
Varsha Menon ◽  
...  

2013 ◽  
Vol 67 (2) ◽  
pp. 703-716 ◽  
Author(s):  
Dimitris J. Panagopoulos ◽  
Andreas Karabarbounis ◽  
Constantinos Lioliousis

2019 ◽  
Author(s):  
Jakob Gebel ◽  
Marcel Tuppi ◽  
Apirat Chaikuad ◽  
Katharina Hötte ◽  
Laura Schulz ◽  
...  

AbstractCell fate decisions such as apoptosis require cells to translate signaling input into a binary yes/no response. A tight control of the process is required to avoid loss of cells by accidental activation of cell death pathways. One particularly critical situation exists in primary oocytes because their finite number determines the reproductive capacity of females. On the one hand a stringent genetic quality control is necessary to maintain the genetic integrity of the entire species; on the other hand an overly stringent mechanism that kills oocytes with even minor DNA damage can deplete the whole primary oocyte pool leading to infertility. The p53 homolog TAp63α is the key regulator of genome integrity in oocytes. After DNA damage TAp63α is activated by multistep phosphorylation involving multiple phosphorylation events by the kinase CK1, which triggers the transition from a dimeric and inactive conformation to an open and active tetramer. By measuring activation kinetics in ovaries and single site phosphorylation kineticsin vitrowith peptides and full length protein we show that TAp63α phosphorylation follows a biphasic behavior. While the first two CK1 phosphorylation events are fast, the third one that constitutes the decisive step to form the active conformation is slow. We reveal the structural mechanism for the difference in the kinetic behavior based on an unusual CK1/TAp63α substrate interaction and demonstrate by quantitative simulation that the slow phosphorylation phase determines the threshold of DNA damage required for induction of apoptosis.


2021 ◽  
pp. molcanther.MCT-20-0252-E.2020
Author(s):  
Antje Lindemann ◽  
Ameeta A Patel ◽  
Lin Tang ◽  
Noriaki Tanaka ◽  
Frederico O. Gleber-Netto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document