scholarly journals Influence of differently viscous hydraulic fluid on the flow behaviour inside a hydraulic tank

Author(s):  
Ignacijo Biluš ◽  
Luka Lešnik ◽  
Luka Kevorkijan ◽  
Darko Lovrec

The viscosity of a hydraulic fluid is certainly one of the most important material properties of a fluid, as it affects a whole range of phenomena in the hydraulic system and the operation of the entire system. Among other things, it affects the efficiency of the hydraulic device directly. Thus, the development of hydraulic fluids goes in the direction of fluids with lower viscosity, which, in turn, results in different flow behaviour and processes inside the hydraulic tank. The paper presents the results of a study of the flow conditions in a small hydraulic tank for cases of different fluid viscosities. The results were obtained based on a detailed simulation of conditions inside the tank. Apart from the impact of the changed flow conditions, the lower viscosity of the liquid also influences the elimination of solid contaminants and air.

2014 ◽  
Vol 616 ◽  
pp. 126-134 ◽  
Author(s):  
Janka Mihalčová ◽  
Peter Šmeringai

The article deals with the issue of ensuring the reliability of aircraft engines operation via hydraulic fluids properties monitoring. There are presented the results of the hydraulic fluid Aero Shell Fluid 41 (ASF 41) properties evaluation in the hydraulic system of a double-flow turbosupercharged aircraft engine AI-25TL. In the hydraulic fluid, there were observed the quantity and distribution of mechanical particles according to their size in accordance with the ISO Cleanliness Code, ISO 4406.There was also determined kinematic viscosity according to the standard EN ISO 3104+AC. FTIR analysis of the infrared spectrum was used to determine the degradation degree of the hydraulic fluid physical-chemical properties.


2014 ◽  
Vol 60 (Special Issue) ◽  
pp. S37-S43 ◽  
Author(s):  
I. Janoško ◽  
T. Polonec ◽  
S. Lindák

In environmental terms, hydraulic fluids used in the hydraulic system of municipal vehicles represent problems related to a potential leakage from the system into the environment and the subsequent contamination of groundwater and soil. More environment-friendly way is to use green hydraulic fluids that are biodegradable in accidents. This paper aims to investigate the possibilities of biodegradable oil application and its adaptation in the hydraulic systems of municipal vehicles by monitoring the impact of the bio-oil Mobil EAL 46 ESSO on the performance parameters as flow, efficiency, durability, etc. Hydraulic pump revolutions were measured using a non-contact sensor based on the principle of magnetic induction change. Method of tightness monitoring was used to achieve results for functionality and wear of the hydraulic system. During 600 h of the test period no significant deterioration of performance parameters was detected. Results are useful for companies involved in waste collection.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Darko Lovrec ◽  
Vito Tič

Purpose Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding the electrical properties of the fluid used. The latter is closely related to the purpose, type, structure, and conditions of use of a hydraulic system, especially the powertrain design and fluid condition monitoring. The insulating capacity of the hydraulic fluid is important in cases where the electric motor of the pump is immersed in the fluid. In other cases, on the basis of changing the electrical conductive properties of the hydraulic fluid, we can refer its condition, and, on this basis, the degree of degradation. Design/methodology/approach The paper first highlights the importance of knowing the electrical properties of hydraulic fluids and then aims to compare these properties, such as the breakdown voltage of commonly used hydraulic mineral oils and newer ionic fluids suitable for use as hydraulic fluids. Findings Knowledge of this property is crucial for the design approach of modern hydraulic compact power packs. In the following, the emphasis is on the more advanced use of known electrical quantities, such as electrical conductivity and the dielectric constant of a liquid. Originality/value Based on the changes in these quantities, we have the possibility of real-time monitoring the hydraulic fluid condition, on the basis of which we judge the degree of fluid degradation and its suitability for further use.


2012 ◽  
Vol 6 (4) ◽  
pp. 488-493 ◽  
Author(s):  
Yutaka Tanaka ◽  
◽  
Sayako Sakama ◽  
Ryushi Suzuki ◽  

With a view to environmental compatibility, energy saving, cost reduction, and high performance and efficiency, one trend in hydraulic systems, particularly in mobile markets, is to design them to be more compact, require less hydraulic fluid in the reservoir, and use their working hydraulic fluid longer. Air bubbles entrained in working hydraulic fluids have greatly detrimental effects on the function and lifetime of hydraulic fluids, components, and systems. A bubble eliminator using a swirl flow that can eliminate air bubbles from working hydraulic fluid has been proposed and developed by our smart and clean hydraulic project. This paper focuses on technical issues related to air bubbles, the aging process of hydraulic oil, and a field test of the performance of the bubble eliminator.


2021 ◽  
Vol 46 ◽  
pp. 101468
Author(s):  
Periyasamy Kaliyappan ◽  
Andreas Paulus ◽  
Jan D’Haen ◽  
Pieter Samyn ◽  
Yannick Uytdenhouwen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2784
Author(s):  
Georgios Maliaris ◽  
Christos Gakias ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.


2012 ◽  
pp. n/a-n/a ◽  
Author(s):  
Kue-Young Kim ◽  
Weon Shik Han ◽  
Eungyu Park

Sign in / Sign up

Export Citation Format

Share Document