scholarly journals Performance parameters monitoring of the hydraulic system with bio-oil

2014 ◽  
Vol 60 (Special Issue) ◽  
pp. S37-S43 ◽  
Author(s):  
I. Janoško ◽  
T. Polonec ◽  
S. Lindák

In environmental terms, hydraulic fluids used in the hydraulic system of municipal vehicles represent problems related to a potential leakage from the system into the environment and the subsequent contamination of groundwater and soil. More environment-friendly way is to use green hydraulic fluids that are biodegradable in accidents. This paper aims to investigate the possibilities of biodegradable oil application and its adaptation in the hydraulic systems of municipal vehicles by monitoring the impact of the bio-oil Mobil EAL 46 ESSO on the performance parameters as flow, efficiency, durability, etc. Hydraulic pump revolutions were measured using a non-contact sensor based on the principle of magnetic induction change. Method of tightness monitoring was used to achieve results for functionality and wear of the hydraulic system. During 600 h of the test period no significant deterioration of performance parameters was detected. Results are useful for companies involved in waste collection.

2021 ◽  
pp. 27-30
Author(s):  

An algorithm is proposed for calculating a closed volumetric hydraulic pump-hydraulic motor system using the example of the hydraulic system of a wind power plant, based on the calculation of the hydraulic systems of mobile machines. The main characteristics of the system components, the selection of initial data for the calculation, working fluid and diameters of hydraulic lines are analyzed. Keywords: hydraulic system, energy, fluid, oil, pump, motor, renewable energy source, wind power plant, machine. [email protected]


2019 ◽  
Vol 18 (1) ◽  
pp. 30-41
Author(s):  
A. M. Gareyev ◽  
I. A. Popelnyuk ◽  
D. M. Stadnik

А method based on comparing oscilloscope patterns of operational parameters with reference curves is one of the most promising methods of diagnosing hydraulic systems among the existing ones. Its implementation does not allow accurate localization of the faulty unit in the system and quantitative estimation of the magnitude of the fault. To eliminate these shortcomings, it is advisable to use simulation models of hydraulic units, taking into account typical faults of a hydraulic system. Their use makes it possible to evaluate the effect of a particular malfunction on the change of dynamic parameters at the stage of mathematical modeling. As a result of the analysis of statistical information and literary sources, characteristic faults of hydraulic systems are identified. Their causes and the impact on the operation of hydraulic units are examined. Simulation models of units taking into account typical faults are described in the Matlab / Simscape software package. They are implemented using a typical hydraulic system as an example. Dynamic characteristics of a hydraulic system in a healthy condition and those of a system with one of the characteristic faults are compared.


2016 ◽  
Vol 8 (4) ◽  
pp. 64-68
Author(s):  
Сазонова ◽  
Svetlana Sazonova

The results of computational experiments to assess the impact of parametric optimization of hydraulic systems on economic performance. The object of the research system of low-pressure gas supply of a residential district was chosen. The purpose of research is to optimize the economic parameters for the number of backup sites, sufficient to provide the desired level of reliability and security in the operation of the systems studied.


2017 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
Fitria Adhi Geha Nusa ◽  
Sugiyanto Sugiyanto

Sugarcane core sampler is a plantation equipment sector which collect sugar cane samples and determining of rendemen in sugarcane. Sugarcane core sampler is a new product made by PT. United Tractors Pandu Engineering to solve problem about determining of individual rendemen in sugarcane at sugar mill. In operation Sugarcane Core Sampler uses a hydraulic system as the prime mover, either to raise the platform, take samples of cane and push it out of the probe cylinder. In order for the hydraulic system to work optimally, it is necessary to design and calculate the specification of components to be used on tilting cylinders, ejector, hydraulic pump, and reservoir (hydraulic tank). It also conducted a discussion of the difference between the Core Sampler Sugarcane fixed and mobile models. From the calculation results obtained inside diameter tilting cylinder is Ø100 mm with rod cylinder Ø56 mm, inside diameter of ejector cylinder is Ø32 mm with rod cylinder Ø1 8mm. At the biggest pump flow required is 51.81 lpm and displacement 43 cc/rev, from result of calculation hence specified pump which used is pist on pump type with displacement 41 cc/rev. For hydraulic tank capacity requiredon all hydraulic systems is 177 liters.


2019 ◽  
Vol 302 ◽  
pp. 01020
Author(s):  
Jozef Nosian ◽  
Marietta Markiewicz ◽  
Romana Janoušková ◽  
Patrícia Feriancová

The aim of the present article is the construction of a device for measuring and testing hydrostatic converters and subsequent verification measurement of the proposed device. This device will allow the measurement and testing of hydraulic pumps under laboratory conditions. In our case, we will test the hydraulic pump UD–25R, which is used in hydraulic drives of agricultural machines. Last but not least, the device described in the article can be used to test individual energy carriers used in hydraulic systems. The described device can simulate conditions that occur in operation. Using verification measurements we have proved that the designed laboratory equipment is suitable for testing hydraulic components and also allows monitoring and testing of the properties of individual hydraulic fluids. The measurement will result in a change in flow rate over time.


2017 ◽  
Vol 60 (6) ◽  
pp. 1809-1817
Author(s):  
Farid Breidi ◽  
Jordan Garrity ◽  
John Lumkes

Abstract. Hydraulic systems are prevalent in agricultural machinery and equipment and can be found transmitting power for vehicle drive wheels, powering attachments, and controlling motion (booms, steering, load height, etc.). Agricultural applications of fluid power have advanced in terms of capability and efficiency, but opportunities remain for significant improvements in efficiency, noise reduction, and reliability. The average system-level hydraulic efficiency of current mobile agricultural machines is only 21.1%. Because nearly all hydraulic systems use pumps to convert engine power to fluid power, improving the efficiency of the pumps (and motors when used as actuators) significantly impacts the system efficiency. This work examines the impact of using more efficient digital pump/motors to improve the overall efficiency of agricultural equipment, such as tractors, harvesters, planters, fertilizers, sprayers, and attachments. Maintaining higher pump/motor efficiency throughout the operating range is the central principal for the energy savings. Currently used variable-displacement pumps have low efficiencies at low displacement levels due to constant losses that do not scale with the power produced. Digital pump/motors minimize these inefficiencies because energy losses scale more closely with the power produced. Experimental results indicate an average efficiency of 85% when operating at 20% to 100% displacement. This efficiency is 15% to 20% higher on average than with current variable-displacement axial piston pumps. This study demonstrates that achieving this improvement in the efficiency of the pump/motors used in tractors and harvesters alone would conservatively save $61.7 million worth of energy annually for end users in the U.S. agricultural sector. Keywords: Agricultural equipment, Digital hydraulics, Efficiency improvement, Hydraulic pump/motor.


2014 ◽  
Vol 931-932 ◽  
pp. 403-407
Author(s):  
Weerapong Chanbua ◽  
Unnat Pinsopon

At the present time, researchers try to find alternative fluids for being used as lubricants or hydraulic fluids that are biodegradable and environmental friendly. In this study, Refined-Bleached-Deodorized (RBD) palm olein was investigated whether it is such a potential candidate. RBD palm olein could be easily acquired since it is of the type used as cooking oil. The physical properties of both conventional hydraulic oil and RBD palm olein were tested and compared by an accredited laboratory. The performance of the hydraulic systems when using both fluids as working mediums were also tested and compared. The experimental results show that temperature significantly affected the performance of the hydraulic system when using conventional hydraulic oil, whereas the performance of the hydraulic system when using RBD palm olein barely changed with temperatures. At the temperatures below 60 °C, the RBD palm olein yielded less flow rate and less energy efficiency. However, for the temperatures above 60 °C, the RBD palm olein yielded slightly more flow rate and slightly more energy efficiency. It can be confirmed from this study that RBD palm olein can be used as an alternative hydraulic fluid.


2021 ◽  
Vol 264 ◽  
pp. 02026
Author(s):  
Kamoliddin Rustamov ◽  
Samandar Komilov ◽  
Mavlon Kudaybergenov ◽  
Shamshir Shermatov ◽  
Shahzod Xudoyqulov

Relevance. When the hydraulic fluid is operated for several cycles, the impact on hydraulic performance and longevity is greatly increased. So, there are several ways to fix this problem. To increase the efficiency of the hydraulic system, it is necessary to study the working processes, the hydraulic systems of the quick-change equipment of the machine with a lawn of the kshp are made as a whole, and the equipment of the machine is attached to the suspension device. The complexity of these processes lies in the fact that they allow experimental research and verification of results using mathematical models. Aim. The purpose of the experimental study in this dissertation is to study the effect of forces acting on the hydraulic system when excavating the hydraulic system of a multipurpose machine and substantiate the parameters by assessing power use efficiency. Methods. Checking the suitability of the working fluid during earthworks, as well as the mathematical model. In this case, we studied the hydraulic system of a single-bucket excavator, the device of quick-change equipment for a universal machine. Results. The theoretical work performed has been verified and the confirmation of the operation of a multipurpose machine designed with earth and dozer equipment. The installation of equipment based on TTZ-80 made it possible to carry out experimental research with the most energy-intensive workflow, determining energy efficiency indicators for excavation and leveling. Conclusion. Comprehensive tests made it possible to conclude that the characteristics of the developed design and the characteristics of the engine of the base machine - the TTZ-80.10 - KM-1 tractor, overcome the resistance encountered during technological operations of a multipurpose machine.


2021 ◽  
Author(s):  
Ignacijo Biluš ◽  
Luka Lešnik ◽  
Luka Kevorkijan ◽  
Darko Lovrec

The viscosity of a hydraulic fluid is certainly one of the most important material properties of a fluid, as it affects a whole range of phenomena in the hydraulic system and the operation of the entire system. Among other things, it affects the efficiency of the hydraulic device directly. Thus, the development of hydraulic fluids goes in the direction of fluids with lower viscosity, which, in turn, results in different flow behaviour and processes inside the hydraulic tank. The paper presents the results of a study of the flow conditions in a small hydraulic tank for cases of different fluid viscosities. The results were obtained based on a detailed simulation of conditions inside the tank. Apart from the impact of the changed flow conditions, the lower viscosity of the liquid also influences the elimination of solid contaminants and air.


2021 ◽  
Vol 11 (7) ◽  
pp. 3033
Author(s):  
Michele De Santis ◽  
Luca Silvestri ◽  
Antonio Forcina ◽  
Gianpaolo Di Bona ◽  
Anna Rita Di Fazio

Most industrial trucks are equipped with hydraulic systems designed for specific operations, for which the required power is supplied by the internal combustion engine (ICE). The largest share of the power consumption is required by the hydraulic system during idling operations, and, consequently, the current literature focuses on energy saving strategies for the hydraulic system rather than making the vehicle traction more efficient. This study presents the preliminary realization of an electric-powered hydraulic pump system (e-HPS) that drives the lifting of the dumpster and the garbage compaction in a waste compactor truck, rather than traditional ICE-driven hydraulic pump systems (ICE-HPSs). The different components of the e-HPS are described and the battery pack was modelled using the kinetic battery model. The end-of-life of the battery pack was determined to assess the economic feasibility of the proposed e-HPS for the truck lifespan, using numerical simulations. The aim was twofold: to provide an implementation method to retrofit the e-HPS to a conventional waste compactor truck and to assess its economic feasibility, investigating fuel savings during the use phase and the consequent reduction of CO2 emissions. Results show that the total lifespan cost saving achieved a value of 65,000 €. Furthermore, total CO2 emissions for the e-HPS were about 80% lower than those of the ICE-HPS, highlighting that the e-HPS can provide significant environmental benefits in an urban context.


Sign in / Sign up

Export Citation Format

Share Document