Ballistic design of missions involving the delivery of Lunar soil to the Earth

Author(s):  
E.S. Gordienko ◽  
A.V. Simonov ◽  
P.A. Khudorozhkov

The paper discusses the design of a mission for delivering lunar soil to the Earth. The analysis of its main stages is carried out. These stages include possible flight pattern selection, analysis of the flight from the Earth to the circular orbit of the Moon artificial satellite, determination of trajectories of removal from lunar surface into the reference orbit, the search for return paths that depart from the Moon and fall into a given area on the Earth’s surface. A variant of determining the initial approximation for the method of return paths constructing is proposed. It is based on solving a two-parameter boundary value problem in the central field of the Earth. Varying the duration of the flight from the Moon to the Earth and the time of the spacecraft approach to the Earth, pointing return trajectory into vicinity of the polygon P is achieved for a given perigee radius. The article presents the main characteristics of the mission obtained using this technique.

1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1967 ◽  
Vol 20 (03) ◽  
pp. 281-285
Author(s):  
H. C. Freiesleben

It has recently been suggested that 24-hour satellites might be used as navigational aids. To what category of position determination aids should these be assigned ? Is a satellite of this kind as it were a landmark, because, at least in theory, it remains fixed over the same point on the Earth's surface, in which case it should be classified under land-based navigation aids ? Is it a celestial body, although only one tenth as far from the Earth as the Moon ? If so, it is an astronomical navigation aid. Or is it a radio aid ? After all, its use for position determination depends on radio waves. In this paper I shall favour this last view. For automation is most feasible when an object of observation can be manipulated. This is easiest with radio aids, but it is, of course, impossible with natural stars.At present artificial satellites have the advantage over all other radio aids of world-wide coverage.


2013 ◽  
Vol 40 (1) ◽  
pp. 135-146
Author(s):  
Aleksandar Tomic

Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary) orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujicic made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujicic, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.


1985 ◽  
Vol 19 (1) ◽  
pp. 193-205 ◽  
Author(s):  
Ya. S. Yatskiv ◽  
W. J. Klepczynski ◽  
F. Barlier ◽  
H. Enslin ◽  
C. Kakuta ◽  
...  

During the period, work on the problem of the Earth’s rotation has continued to expand and increase its scope. The total number of institutions engaged in the determination of the Earth’s rotation parameters (ERP) by different techniques has been increased significantly. The rotation of the Earth is currently measured by classical astrometry, Doppler and laser satellite tracking, laser ranging of the Moon, and radio interferometry. Several long time series of the ERP are available from most of these techniques, in particular, those made during the Main Campaign of the MERIT project. The various series have been intercompared and their stability, in the time frame of years to days, has been estimated for the purposes of establishing a new conventional terrestrial reference system (COTES). On the other hand, the difficulties of maintaining a regular operation for laser ranging to the Moon (LLR) have been recognized. It resulted in the proposal to organize an one-month campaign of observations in 1985 in order to complement the COTES collocation program and to allow additional intercomparisons with other techniques.


1972 ◽  
Vol 47 ◽  
pp. 22-31 ◽  
Author(s):  
S. K. Runcorn ◽  
S. Hofmann

The determination of the heights of points on the lunar surface by Earth based astronomy using the geometrical librations, although individually of low accuracy, still provides our best method of obtaining the global shape of the Moon. The intrinsic scatter of the results arises from the effects of ‘seeing’ and simple statistical analysis is required to derive valid conclusions about the shape. Baldwin's method of fitting ellipsoidal surfaces to the points on the maria and uplands, separately by the method of least squares proves to be a valuable tool.Analyses of the ACIC points and of the Pic du Midi studies of G. A. Mills show that good first descriptions of the global shape of the Moon for both the maria and uplands are triaxial ellipsoids with their long axes within 10° of the Earth direction, the major axis of the maria being about 1.3 km smaller than that of the uplands. Of particular significance is that the ellipticity of these surfaces is about 2½ times greater than the dynamical ellipticity; thus the non-hydrostatic figure of the Moon is not simply the result of distortion from a uniform Moon during its early history. The angular variation in density within the Moon cannot be simply a phenomena within the crust but must extend to a great depth. Convection could provide an explanation.The departures of the lunar surface from the idealised ellipsoids are also of interest. The circular maria are systematically depressed relative to the maria ellipsoid: can the mascons have adjusted isostatically since their formation? Systematic differences in height between the western and eastern southern uplands are also noted.


2020 ◽  
Vol 2 (1) ◽  
pp. 34
Author(s):  
Wasudewa Bhattacarya

<p><em>The spread of Hinduism from India to Indonesia is the result of acculturation of culture which then brought the concepts of Astronomy-Astrology in </em><em>Jyotiṣa </em><em>to Indonesia and Bali. Arriving in Bali, the concept of Astronomy-Astrology is known as Wariga. Wariga’s existence gave rise to holy days in the implementation of Yajña. One of them is the holy day of Purnama-Tilem. The determination of this holy day is based on the appearance of the moon from the earth as a repetitive cycle. If the moon appears perfectly round from the earth, it is called Purnama (Full Moon), whereas if the moon is not visible from the earth it is called Tilem (Dark Moon). This shows that there are two very basic differences in  determining Purnama  and  Tilem.  Dualistic this difference in Hinduism is called Rwa Bhinneda. Rwa Binneda is a polarization of life that speaks of all forms of dualism such as, top down, right left, dark light, and so on. Based on manuscipts in Bali, the existence of Purnama and Tilem shows a dualism in Hindu Theology called Sanghyang Rwa Bhinneda there  are Sanghyang Wulan and Sanghyang Surya at the level of </em><em>Saguṇa </em><em>Brahman. The dualism of the difference between Purnama and Tilem also influences Bhuwana Agung and Bhuwana Alit. The difference in the meaning of Purnama and Tilem is not something bad, but through this difference will bring about a balance between God, humans and the universe so that all beings will be able to reach the Moksartham Jagadhita ya ca iti Dharma.</em><em></em></p><p><strong><em><br /></em></strong><em></em><em></em></p>


1961 ◽  
Vol 14 (1) ◽  
pp. 87-93
Author(s):  
W. A. Scott

While engaged in the observation and prediction of the position of Sputnik I, it was realized that, if a reliable orbit were available, and an observation of the satellite against the background of stars were made to a precision of about 0°·1 and timed to about 0·2 of a second, then the position of the observer could be determined to a precision sufficient for most navigational purposes. The following account demonstrates how this has actually been done from a single visual observation of the American Balloon Satellite Echo I (designated 1960ι1).Principle of method. The direction in which an observer on the Earth's surface sees an artificial satellite at any instant differs from that in which it is seen by any other observer and from that in which it would be observed from the centre of the Earth. The amount and direction of the parallactic shift can be determined from the comparison of the direction of observation with that calculated from the geocentric ephemeris of the satellite; and the position of the observer on the Earth's surface can be uniquely calculated from this parallactic shift. Only a single observation is required, without reference to the vertical.


Author(s):  
Richard J. Walker

Discovery of small enrichments in 182 W/ 184 W in some Archaean rocks, relative to modern mantle, suggests both exogeneous and endogenous modifications to highly siderophile element (HSE) and moderately siderophile element abundances in the terrestrial mantle. Collectively, these isotopic enrichments suggest the formation of chemically fractionated reservoirs in the terrestrial mantle that survived the putative Moon-forming giant impact, and also provide support for the late accretion hypothesis. The lunar mantle sources of volcanic glasses and basalts were depleted in HSEs relative to the terrestrial mantle by at least a factor of 20. The most likely explanations for the disparity between the Earth and Moon are either that the Moon received a disproportionately lower share of late accreted materials than the Earth, such as may have resulted from stochastic late accretion, or the major phase of late accretion occurred prior to the Moon-forming event, and the putative giant impact led to little drawdown of HSEs to the Earth's core. High precision determination of the 182 W isotopic composition of the Moon can help to resolve this issue.


2009 ◽  
Vol 5 (S264) ◽  
pp. 475-477 ◽  
Author(s):  
David S. McKay ◽  
Louise Riofrio ◽  
Bonnie L. Cooper

AbstractThe lunar regolith (soil) has recorded a history of the early Moon, the Earth, and the entire solar system. A major goal of the developing lunar exploration program should be to find and play back existing fragments of that tape. By playing back the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the solar system and in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 GY, and the less intense bombardment occurring since that time. Decrease in bombardment allowed life to develop on Earth. This impact history is preserved as megaregolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history for the Earth and Moon possibly had profound effects on the origin and development of life. Life may have arrived via meteorite transport from a more quiet body, such as Mars. The solar system may have experienced bursts of severe radiation from the Sun, other stars or from unknown sources. The lunar regolith has also recorded a radiation history in the form of implanted and trapped solar wind and solar flare materials and radiation damage. The Moon can be considered as a giant tape recorder containing the history of the solar system. Lunar soil generated by small impacts will be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar recording can provide detailed snapshots of specific portions of solar and stellar variability.


1962 ◽  
Vol 14 ◽  
pp. 107-111
Author(s):  
Marvin Q. Marchant

The determination of horizontal and vertical control points has been undertaken by the Army Map Service, U.S. Army Corps of Engineers, to assure that the entire surface of the Moon which is visible from the Earth may be shown in detail and with greater accuracy than that of any existing map.


Sign in / Sign up

Export Citation Format

Share Document