scholarly journals Phenotypic diversity of bread wheat lines with introgressions from the diploid cereal Aegilops speltoides for technological properties of grain and f lour

2020 ◽  
Vol 24 (7) ◽  
pp. 738-746
Author(s):  
L. V. Shchukina ◽  
I. F. Lapochkina ◽  
T. A. Pshenichnikova

The creation of varieties adapted to changing environmental conditions, resistant to various pathogens, and satisfying various grain purposes is impossible without using the genetic diversity of wheat. One of the ways to expand the genetic diversity of wheat is to introduce new variants of genes from the genetic pool of congeners and wild relatives into the genotypes of existing varieties. In this study, we used 10 lines from the Arsenal collection created on the genetic basis of the spring variety ‘Rodina’ and the diploid species Aegilops speltoides in the Federal Research Center “Nemchinovka” in 1994. The lines were previously characterized for the presence of translocations and chromosomal rearrangements cytologically and using molecular markers. Technological analyses were performed on grain obtained in Western Siberia and Moscow region. The aim of this study was to establish the possibilities of expanding the phenotypic diversity for technological properties of grain and flour as a result of such hybridization of bread wheat and the diploid cereal Aegilops speltoides. The variety ‘Rodina’ forms a vitreous grain with a high gluten content in Siberia, but has low physical properties of flour and dough. Five derived lines were found to have significantly higher protein and gluten content in grain. The highest values under both growing conditions were found in lines 73/00i, 82/00i, and 84/00i. Two lines (69/00i and 76/00i) showed a high flour strength and dough elasticity, characterizing the lines as strong and valuable in quality. These lines can be used for baking bread. Line 82/00i inherited from Ae. speltoides a soft-grain endosperm, which indicates the introgression of the Ha-Sp gene, homoeoallelic to the Ha gene of bread wheat, into ‘Rodina’. Flour of this line is suitable for the manufacture of confectionery without the use of technological additives. The lines generally retained their characteristics in different growing conditions. They can be attracted as donors of new alleles of genes that determine the technological properties of grain and resistance to biotic stresses.

2005 ◽  
Vol 53 (3) ◽  
pp. 261-272 ◽  
Author(s):  
S. P. Martynov ◽  
T. V. Dobrotvorskaya ◽  
A. I. Morgounov ◽  
R. A. Urazaliev ◽  

The genetic diversity of 116 spring bread wheat cultivars released in Kazakhstan from 1929-2004 was studied by means of a genealogical analysis. The tendency of genetic diversity to change over time was traced by analysing a series of n ´ m matrices, where n is the number of released cultivars and m is the number of landrace ancestors. The pool of landrace ancestors of spring wheat cultivars in 1929-2004 contained a total of 114 landraces and old varieties, including 19 from Kazakhstan and Central Asia and 23 from neighbouring regions of Russia. The original ancestors differ significantly in frequency of presence and hence in their importance in the genepool of spring wheats cultivated in Kazakhstan. Significant differences in the contributions of dominant ancestors to cultivars for various regions have been revealed, showing that those ancestors were specifically adapted to different growing conditions. During the past 75 years, genetic diversity has increased due to the wide use of foreign materials in breeding programmes. A more detailed study has shown that during the period analysed, 15 landraces from Kazakhstan and neighbouring regions of Central Asia and Russia (35% of local germplasm) were lost from the pedigrees. The cluster structure of modern cultivars included in the Kazakhstan Official List (2002) was established. By analysing coefficients of parentage, significant differences in the genetic diversity of cultivars from various growing regions were revealed.


2021 ◽  
Vol 182 (1) ◽  
pp. 91-98
Author(s):  
A. V. Simonov ◽  
T. A. Pshenichnikova

Background.The end-use of the bread wheat grain depends on the endosperm properties determined by the alleles of the Pinaand Pinbgenes at the Halocus on chromosome 5D. The mealy (soft) endosperm is generated by the biosynthesis of puroindolines – complete proteins encoded by these genes. When milled, such grain breaks down into small starch granules covered with proteins. Mutations that disrupt the synthesis or structure of puroindolines determine the hardness and vitreousness of the grain. Earlier, we discovered a new locus for grain softness, Ha-Sp, introgressed from the diploid species Aegilops speltoidesTausch, which also determines the formation of the soft endosperm structure. By combining two active loci in one genotype, we produced a supersoft grain line (SSL). The aim of the present work was to verify the interaction of the two loci Haand HaSpin other wheat genotypes and evaluate the technological properties of grain and flour in comparison with the existing SSL line.Materials and methods.The F3–F8 hybrids from crosses of the soft-grain spring cultivars ‘Golubka’ and ‘Lutescens 62’, carriers of the Halocus, with the introgressive line 84/98w, carrier of the Ha-Splocus, were used in the work. Grain from three field seasons was studied according to milling parameters and physical properties of flour and dough.Results.At the early stages of selection (F3:4), the families with milling parameters typical of bread wheat were identified, as well as supersoft-grain families with a small flour particle size (9–10 μm) and low endosperm vitreousness (29–49%). Targeted selection made it possible to obtain lines similar to the SSL line in terms of milling performance and flour strength.Conclusion.For the first time, a set of supersoft-grain lines with special properties of grain and flour was obtained on the genetic basis of three spring cultivars. They may be in demand for a wide range of end-uses, including both food and nonfood production purposes.


2012 ◽  
Vol 48 (No. 1) ◽  
pp. 23-32 ◽  
Author(s):  
I. Bellil ◽  
M. Chekara Bouziani ◽  
D. Khelifi

Saharan wheats have been studied particularly from a botanical viewpoint. Genotypic identification, classification and genetic diversity studies to date were essentially based on the morphology of the spike and grain. For this, the allelic variation at the glutenin loci was studied in a set of Saharan bread and durum wheats from Algerian oases where this crop has been traditionally cultivated. The high molecular weight and low molecular weight glutenin subunit composition of 40 Saharan bread and 30 durum wheats was determined by SDS-PAGE. In Saharan bread wheats 32 alleles at the six glutenin loci were detected, which in combination resulted in 36 different patterns including 17 for HMW and 23 for LMW glutenin subunits. For the Saharan durum wheats, 29 different alleles were identified for the five glutenin loci studied. Altogether, 29 glutenin patterns were detected, including 13 for HMW-GS and 20 for LMW-GS. Three new alleles were found in Saharan wheats, two in durum wheat at the Glu-B1 and Glu-B3 loci, and one in bread wheat at the Glu-B1 locus. The mean indices of genetic variation at the six loci in bread wheat and at the five loci in durum wheat were 0.59 and 0.63, respectively, showing that Saharan wheats were more diverse. This information could be useful to select Saharan varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.


2009 ◽  
Vol 37 (4) ◽  
pp. 489-498 ◽  
Author(s):  
N. Iqbal ◽  
A. Tabasum ◽  
H. Sayed ◽  
A. Hameed

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 665-672 ◽  
Author(s):  
Zhi-Jun Cheng ◽  
Minoru Murata

AbstractFrom a wild diploid species that is a relative of wheat, Aegilops speltoides, a 301-bp repeat containing 16 copies of a CAA microsatellite was isolated. Southern blot and fluorescence in situ hybridization revealed that ∼250 bp of the sequence is tandemly arrayed at the centromere regions of A- and B-genome chromosomes of common wheat and rye chromosomes. Although the DNA sequence of this 250-bp repeat showed no notable homology in the databases, the flanking or intervening sequences between the repeats showed high homologies (>82%) to two separate sequences of the gag gene and its upstream region in cereba, a Ty3/gypsy-like retroelement of Hordeum vulgare. Since the amino acid sequence deduced from the 250 bp with seven CAAs showed some similarity (∼53%) to that of the gag gene, we concluded that the 250-bp repeats had also originated from the cereba-like retroelements in diploid wheat such as Ae. speltoides and had formed tandem arrays, whereas the 300-bp repeats were dispersed as a part of cereba-like retroelements. This suggests that some tandem repeats localized at the centromeric regions of cereals and other plant species originated from parts of retrotransposons.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1076-1085 ◽  
Author(s):  
M. Niranjana ◽  
Vinod ◽  
J.B. Sharma ◽  
Niharika Mallick ◽  
S.M.S. Tomar ◽  
...  

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20202398
Author(s):  
Eleni L. Petrou ◽  
Angela P. Fuentes-Pardo ◽  
Luke A. Rogers ◽  
Melissa Orobko ◽  
Carolyn Tarpey ◽  
...  

The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring ( Clupea pallasii ) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2 , which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring ( Clupea harengus ). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.


2020 ◽  
Author(s):  
Kathryn G. Turner ◽  
Claire M. Lorts ◽  
Asnake T. Haile ◽  
Jesse R. Lasky

AbstractBiodiversity can affect the properties of groups of organisms, such as ecosystem function and the persistence of colonizing populations. Genomic data offer a newly available window to diversity, complementary to other measures like taxonomic or phenotypic diversity. We tested whether native genetic diversity in field experimental stands of Arabidopsis thaliana affected their aboveground biomass and fecundity in their colonized range. We constructed some stands of genotypes that we a priori predicted would differ in performance or show overyielding. We found no relationship between genetic diversity and stand total biomass. However, increasing stand genetic diversity increased fecundity in high resource conditions. Polyculture (multiple genotype) stands consistently yielded less biomass than expected based on the yields of component genotypes in monoculture. This under-yielding was strongest in stands with late-flowering and high biomass genotypes, potentially due to interference competition by these genotypes. Using a new implementation of association mapping, we identified genetic loci whose diversity was associated with stand-level yield, revealing a major flowering time locus associated with under-yielding of polycultures. Our field experiment supports community ecology studies that find a range of diversity-function relationships. Nevertheless, our results suggest diversity in colonizing propagule pools can enhance population fitness. Furthermore, interference competition among genotypes differing in flowering time might limit the advantages of polyculture.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Savita Chib ◽  
Farhan Ali ◽  
Aswin Sai Narain Seshasayee

ABSTRACT Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection. Prolonged stationary phase is an approximation of natural environments presenting a range of stresses. Survival in prolonged stationary phase requires alternative metabolic pathways for survival. This study describes the repertoire of mutations accumulating in starving Escherichia coli populations in lysogeny broth. A wide range of mutations accumulates over the course of 1 month in stationary phase. Single nucleotide polymorphisms (SNPs) constitute 64% of all mutations. A majority of these mutations are nonsynonymous and are located at conserved loci. There is an increase in genetic diversity in the evolving populations over time. Computer simulations of evolution in stationary phase suggest that the maximum frequency of mutations observed in our experimental populations cannot be explained by neutral drift. Moreover, there is frequent genetic parallelism across populations, suggesting that these mutations are under positive selection. Finally, functional analysis of mutations suggests that regulatory mutations are frequent targets of selection. IMPORTANCE Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection.


Sign in / Sign up

Export Citation Format

Share Document