Acellular outer membrane vesicles of Brucella abortus strain 19 elicits both humoral and cell mediated immune response in mice

Author(s):  
Losa Rose ◽  
Bablu Kumar ◽  
Ankita Jain ◽  
M K Singh ◽  
Abhishek .

Outer membrane vesicles (OMVs) contain biologically active proteins, lipoolysaccharide (LPS), periplasmic and membrane-bound proteins and are known to perform diverse biological functions. OMVs from Brucella abortus S19 were isolated and characterized by transmission electron microscopy (TEM), SDS-PAGE and immunoreactivity was investigated by western blotting. On TEM, bilayered spherical structures of 50-200 nm were observed. SDS-PAGE of OMVs revealed approximate bands size of 82 kDa, 68 kDa, 38 kDa, 32 kDa, 29 kDa and 18 kDa. Western blot analysis of OMVs revealed a dominant immunoreactive band of 38 kDa that correspond to some major outer membrane proteins. Humoral immune response was measured by indirect ELISA which showed that OMV specific antibodies were detected from 7th day post immunization (DPI) onwards and showed a rising trend up to 35th DPI. Cell mediated immune (CMI) response against OMVs as evidenced by the proliferation of splenocytes have also been observed. Thus OMVs were found to possess immunogenic proteins which had potential to induce both humoral as well as cell mediated immunity. After correlating this immune response with protection it has been concluded that OMV can be used as one of the vaccine candidate against brucellosis.

Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 207 ◽  
Author(s):  
Elnaz Rasti ◽  
Angela Brown

Cholera toxin (CT), the major virulence factor of Vibrio cholerae, is an AB5 toxin secreted through the type II secretion system (T2SS). Upon secretion, the toxin initiates endocytosis through the interaction of the B pentamer with the GM1 ganglioside receptor on small intestinal cells. In addition to the release of CT in the free form, the bacteria secrete CT in association with outer membrane vesicles (OMVs). Previously, we demonstrated that strain 569B releases OMVs that encapsulate CT and which interact with host cells in a GM1-independent mechanism. Here, we have demonstrated that OMV-encapsulated CT, while biologically active, does not exist in an AB5 form; rather, the OMVs encapsulate two enzymatic A-subunit (CTA) polypeptides. We further investigated the assembly and secretion of the periplasmic CT and found that a major fraction of periplasmic CTA does not participate in the CT assembly process and instead is continuously encapsulated within the OMVs. Additionally, we found that the encapsulation of CTA fragments in OMVs is conserved among several Inaba O1 strains. We further found that under conditions in which the amount of extracellularly secreted CT increases, the concentration of OMV-encapsulated likewise CTA increases. These results point to a secondary mechanism for the secretion of biologically active CT that does not depend on the CTB-GM1 interaction for endocytosis.


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Tanja Fischer ◽  
Martin Schorb ◽  
Greta Reintjes ◽  
Androniki Kolovou ◽  
Rachel Santarella-Mellwig ◽  
...  

ABSTRACT Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 μm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms. IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.


2006 ◽  
Vol 74 (8) ◽  
pp. 4401-4408 ◽  
Author(s):  
Jon M. Davis ◽  
Humberto M. Carvalho ◽  
Susan B. Rasmussen ◽  
Alison D. O'Brien

ABSTRACT Cytotoxic necrotizing factor type 1 (CNF1), a toxin produced by many strains of uropathogenic Escherichia coli (UPEC), constitutively activates small GTPases of the Rho family by deamidating a single amino acid within these target proteins. Such activated GTPases not only stimulate actin polymerization within affected cells but also, as we previously reported, decrease membrane fluidity on mouse polymorphonuclear leukocytes (PMNs). In that same investigation we found that this diminished membrane movement impedes the clustering of the complement receptor CD11b/CD18 on PMNs and, in turn, decreases PMN phagocytic capacity and microbicidal activity on PMNs in direct contact with CNF1-expressing UPEC as well as on those in proximity to wild-type UPEC. The latter observation suggested to us that CNF1 is released from neighboring bacteria, although at the time of initiation of the study described here, no specific mechanism for export of CNF1 from UPEC had been described. Here we present evidence that CNF1 is released from the CNF1-expressing UPEC strain CP9 (serotype O4/H5/K54) in a complex with outer membrane vesicles (OMVs) and that these CNF1-bearing vesicles transfer biologically active CNF1 to PMNs and attenuate phagocyte function. Furthermore, we show that CNF1-bearing vesicles act in a dose-dependent fashion on PMNs to inhibit their chemotactic response to formyl-Met-Leu-Phe, while purified CNF1 does not. We conclude that OMVs provide a means for delivery of CNF1 from a UPEC strain to PMNs and thus negatively affect the efficacy of the acute inflammatory response to these organisms.


2016 ◽  
Vol 29 (5) ◽  
pp. 374-384 ◽  
Author(s):  
Ofir Bahar ◽  
Gideon Mordukhovich ◽  
Dee Dee Luu ◽  
Benjamin Schwessinger ◽  
Arsalan Daudi ◽  
...  

Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.


Gut Microbes ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jan Kevin Maerz ◽  
Alex Steimle ◽  
Anna Lange ◽  
Annika Bender ◽  
Birgit Fehrenbacher ◽  
...  

2020 ◽  
Author(s):  
Fernanda G. Rocha ◽  
Gregory Ottenberg ◽  
Zavier G. Eure ◽  
Mary E. Davey ◽  
Frank C. Gibson

ABSTRACTSphingolipids (SLs) are essential structural components of mammalian cell membranes. Our group recently determined that the oral anaerobe Porphyromonas gingivalis delivers its SLs to host cells, and that the ability of P. gingivalis to synthesize SLs limits the elicited host inflammatory response during cellular infection. As P. gingivalis robustly produces outer membrane vesicles (OMVs), we hypothesized that OMVs serve as a delivery vehicle for SLs, that the SL status of the OMVs may impact cargo loading to OMVs, and that SL-containing OMVs limit elicited host inflammation similar to that observed by direct bacterial challenge. Transwell cell culture experiments determined that in comparison to the parent strain W83, the SL-null mutant elicited a hyper-inflammatory immune response from THP-1 macrophage-like cells with elevated TNF-α, IL-1β, and IL-6. Targeted assessment of Toll-like receptors (TLRs) identified elevated expression of TLR2, unchanged TLR4, and elevated expression of the adaptor molecules MyD88 and TRIF by SL-null P. gingivalis. No significant differences in gingipain activity were observed in our infection models and both strains produced OMVs of similar size. Using comparative 2-dimensional gel electrophoresis we identified differences in the protein cargo of the OMVs between parent and SL-null strain. Importantly, use of purified OMVs recapitulated the cellular inflammatory response observed in the transwell system with whole bacteria. These findings provide new insights into the role of SLs in P. gingivalis OMV cargo assembly and expand our understanding of SL-OMVs as bacterial structures that modulate the host inflammatory response.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Daniel Yara ◽  
Regis Stentz ◽  
Tom Wileman ◽  
Stephanie Schuller

Enterohaemorrhagic E. coli (EHEC) may instigate bloody diarrhoea and haemolytic uraemic syndrome (HUS) due to Shiga toxin (Stx) production. Stx has been detected within outer membrane vesicles (OMVs), which are membrane-derived nanosized proteoliposomes. During colonisation, EHEC encounters many environmental surroundings such as the presence of bile salts and carbon dioxide (CO2). Here, the influence of different intestinal cues on EHEC OMV production was studied. OMV yield was quantified by densitometric analysis of outer membrane proteins F/C and A, following OMV protein separation by SDS-PAGE. Compared to cultures in Luria broth, higher OMV yields were attained following culture in human cell growth medium and simulated colonic environmental medium, with further increases in the presence of bile salts. Interestingly, lower yields were attained in the presence of T84 cells and CO2. The interaction between OMVs and different human cells was also examined by fluorescence microscopy. Here, OMVs incubated with cells showed internalisation by semi confluent but not fully confluent T84 cell monolayers. OMVs were internalised into the lysosomes in confluent Vero and Caco-2 cells, with Stx being transported to the Golgi and then the Endoplasmic reticulum. OMVs were detected within polarised Caco-2 cells, with no impact on the transepithelial electrical resistance by 24 hours. These results suggest that the colonic environmental factors influences OMV production in vivo. Additionally, results highlight the discrepancies which arise when using different cells lines to examine the intestine. Nevertheless, coupled with Stx, OMVs may serve as tools of EHEC which are involved in HUS development.


Sign in / Sign up

Export Citation Format

Share Document