Variation in lactoferrin gene affects milk lactoferrin content and somatic cell count in murrah buffaloes

Author(s):  
Arun Pratap Singh ◽  
K. P. Ramesha ◽  
M. A. Mir ◽  
Ashwani Arya ◽  
S. Isloor

Lactoferrin plays an important role in antimicrobial defence and is a potential candidate gene for mastitis resistance. In the present investigation, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) studies were carried out in Murrah (Bubalus bubalis) buffaloes to detect single nucleotide polymorphisms (SNPs) of lactoferrin gene and to analyse the association between the observed polymorphisms with milk lactoferrin content and Somatic cell count (SCC). PCR-SSCP analysis revealed a total of 07 different variants in the partial coding region of the lactoferrin gene. PCR-SSCP analysis of exon 10 of lactoferrin gene revealed three and that of exons 4 and 5 revealed two unique patterns each, while all other exons exhibited monomorphic pattern. Comparison of nucleotide sequences of lactoferrin gene of the Murrah buffaloes with taurine reference sequence revealed a total of 14 point mutations, 09 of which were found to be in coding region. Conceptualized translation of nucleotide sequence revealed 07 amino acid changes. SSCP variants of exon 10 (P less than 0.01) had significant effect on milk SCC. The SSCP variants of exon 4 and exon 5 had significant (P less than 0.05) effect on lactoferrin content. The SCC and lactoferrin content in Murrah buffaloes was highest in 4th and above parity group. Stage of lactation had highly significant (P less than 0.01) effect on both milk SCC and lactoferrin content. There was a high and significant (p less than 0.01) correlation (0.741) between SCC and lactoferrin content in milk. The observed association between SSCP variants in lactoferrin gene with milk SCC and milk lactoferrin content can be used as prognostic markers for selection of animals for high lactoferrin content and low somatic cell count, as well as a marker of susceptibility/resistance to mastitis in Murrah buffaloes

2012 ◽  
Vol 51 (No. 1) ◽  
pp. 14-20 ◽  
Author(s):  
K. Wojdak-Maksymiec ◽  
M. Kmiec ◽  
J. Ziemak

The study included 124 Polish Black-and-White dairy cows of various share of the Holstein-Friesian (HF) breed. Lactoferrin (LTF) gene polymorphism was obtained with PCR-RFLP method using EcoRI enzyme. Two alleles of LTF, A and B, were found in the studied population. Their frequencies were 67.74% and 32.56%, respectively. The alleles controlled the occurrence of three genotypes: AA, BB and AB, of frequencies equal to 37.90%, 2.42% and 59.68%, respectively. It was established that statistically significant associations exist between the somatic cell count (SCC) and LTF genotype, lactation month and parity as well as the HF gene share. No significant association was found between somatic cell count and season. The highest somatic cell count (transformed to a logarithmic scale) was found in milk of the AB genotype, whereas the lowest one was found in cows of the AA genotype.


2015 ◽  
Vol 55 (8) ◽  
pp. 999 ◽  
Author(s):  
Adrianna Pawlik ◽  
Grażyna Sender ◽  
Magdalena Sobczyńska ◽  
Agnieszka Korwin-Kossakowska ◽  
Henryka Lassa ◽  
...  

Lactoferrin gene (LF) is regarded as one of the potential markers of mastitis susceptibility/resistance in dairy cattle. The study’s aim was therefore, to investigate the feasibility of two single nucleotide polymorphisms (SNP), placed in the 5′-flanking region and 3′-untranslated region of the LF gene, to serve as mastitis markers. The associations between these SNP and the expression of LF, both on mRNA and protein level, were estimated in the milk of Polish Holstein-Friesian cows. The relationships between polymorphisms and cows’ estimated breeding values (EBV) for somatic cell count were also calculated. It was shown that both polymorphisms have a significant impact on lactoferrin content in milk, and that LF+32 SNP is associated with the cow’s EBV for somatic cell count. No association between SNP chosen for the study and lactoferrin mRNA abundance in milk somatic cells was observed. We propose LF+32 SNP for a molecular marker of mastitis resistance in dairy cows.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1291
Author(s):  
Ryan S. Pralle ◽  
Joel D. Amdall ◽  
Robert H. Fourdraine ◽  
Garrett R. Oetzel ◽  
Heather M. White

Prediction of hyperketonemia (HYK), a postpartum metabolic disorder in dairy cows, through use of cow and milk data has allowed for high-throughput detection and monitoring during monthly milk sampling. The objective of this study was to determine associations between predicted HYK (pHYK) and production parameters in a dataset generated from routine milk analysis samples. Data from 240,714 lactations across 335 farms were analyzed with multiple linear regression models to determine HYK status. Data on HYK or disease treatment was not solicited. Consistent with past research, pHYK cows had greater previous lactation dry period length, somatic cell count, and dystocia. Cows identified as pHYK had lower milk yield and protein percent but greater milk fat, specifically greater mixed and preformed fatty acids (FA), and greater somatic cell count (SCC). Differential somatic cell count was greater in second and fourth parity pHYK cows. Culling (60d), days open, and number of artificial inseminations were greater in pHYK cows. Hyperketonemia prevalence decreased linearly in herds with greater rolling herd average milk yield. This research confirms previously identified risk factors and negative outcomes associated with pHYK and highlights novel associations with differential SCC, mixed FA, and preformed FA across farm sizes and production levels.


2021 ◽  
Vol 88 (1) ◽  
pp. 69-72
Author(s):  
Aline Silva Ramos ◽  
Cristiano Hora Fontes ◽  
Adonias Magdiel Ferreira ◽  
Camila Costa Baccili ◽  
Karen Nascimento da Silva ◽  
...  

AbstractThis research communication presents an automatic method for the counting of somatic cells in buffalo milk, which includes the application of a fuzzy clustering method and image processing techniques (somatic cell count with fuzzy clustering and image processing|, SCCFCI). Somatic cell count (SCC) in milk is the main biomarker for assessing milk quality and it is traditionally performed by exhaustive methods consisting of the visual observation of cells in milk smears through a microscope, which generates uncertainties associated with human interpretation. Unlike other similar works, the proposed method applies the Fuzzy C-Means (FCM) method as a preprocessing step in order to separate the images (objects) of the cells into clusters according to the color intensity. This contributes signficantly to the performance of the subsequent processing steps (thresholding, segmentation and recognition/identification). Two methods of thresholding were evaluated and the Watershed Transform was used for the identification and separation of nearby cells. A detailed statistical analysis of the results showed that the SCCFCI method is able to provide results which are consistent with those obtained by conventional counting. This method therefore represents a viable alternative for quality control in buffalo milk production.


1999 ◽  
Vol 40 (1) ◽  
pp. 47-56 ◽  
Author(s):  
E. Koldeweij ◽  
U. Emanuelson ◽  
L. Janson

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 213-214
Author(s):  
Chad M Page ◽  
Tom Murphy ◽  
Bret Taylor ◽  
Alexis Julian ◽  
Jaelyn Whaley ◽  
...  

Abstract The objectives of the current study were to evaluate the effects of dietary Zn fed at approximately 3 times NRC recommendations on milk Zn concentrations and mammary health. Within Rambouillet (WF) and Hampshire (BF) breeds, ewes were ranked by BW and randomly assigned down the rank into 2 treatment groups: Control (n = 45, 37 mg Zn/kg DM) and Zn treatment (n = 44, 113 mg Zn/kg DM). Treatments were delivered via a ZnSO4-fortified alfalfa pellet fed at a rate of 0.45 kg/d DM from a RFID-activated automated feeder from approximately 6 wk before to 4 wk after lambing. Ewe milk was collected twice weekly, and analyzed for mineral content (d 0, 10, and 30 of lactation) and somatic cell count (SCC; d 3–5, 6–9, 10–12, 13–16, 17–19, 20–23, 24–26, 27–29, or 30–32). Single-bearing ewes had greater Ca, Mg, and P (P ≤ 0.04) than multiple-bearing ewes. Day of lactation influenced milk Mg, P, and Zn (P < 0.01), and values generally decreased as lactation progressed. Milk Zn was 1.7-fold greater (P < 0.01) for Zn treatment than Control ewes. Milk Ca, Mg, and P were greater for Control than Zn treatment (P ≤ 0.02) ewes. A breed × litter size effect was detected for LogSCC (P = 0.02). Single-bearing WF ewes had lower LogSCC than multiple-bearing WF ewes (5.36 ± 0.09 vs 5.74 ± 0.07; P < 0.01) but litter size did not affect BF ewe LogSCC (5.80 ± 0.08 vs 5.79 ± 0.09; P = 0.92). Day of lactation impacted ewe SCC (P < 0.01), with peak SCC between d 6 and 9, which began to decline as lactation progressed. In conclusion, dietary Zn above NRC recommendations increased milk Zn.


Sign in / Sign up

Export Citation Format

Share Document