Effect of Maternal Betaine Supplementation on Growth, Plane of Nutrition, Blood Biochemical Profile and Antioxidant Status of Progeny Pigs

Author(s):  
Alok Mishra ◽  
A.K. Verma ◽  
Asit Das ◽  
Putan Singh ◽  
V.K. Munde

Background: Dietary supplementation of methyl donors like vitamins B9, B12, choline and betaine have been reported to reduce oxidative stress not only in sows but can also reduce oxidative stress in offspring through epigenetic modulation of DNA. However, cell proliferation and fetal development and oxidative stress associated with it is not uniform during the whole length of gestation. Hence this experiment was conducted to study the effects of maternal betaine supplementation on growth, plane of nutrition and antioxidant profile of progeny pigs.Methods: Eighteen crossbred (Landrace X Desi) sows were randomly distributed into three groups of six each in an experiment based on completely randomized design (CRD). The sows in control (T0) were fed standard ration to meet their requirements. Supplementary betaine at 3 g/kg DM were provided either during late pregnancy (d 76 onwards till parturition) only or throughout the length of gestation to the sows of groups T1 and T2, respectively. The samples of feed offered, residue and faeces were analyzed for proximate principles following the standard procedures. Blood samples from the progeny piglets were collected and antioxidant status of the piglets assessed by the measurement of superoxide dismutase (SOD) and catalase (CAT) by using standard kits.Result: The serum concentration of SOD was comparable (p greater than 0.05) among the groups, whereas serum concentration of catalase was higher (p less than 0.05) in piglets born to the dam exposed to supplementary beanie during gestation, the best response was observed whilst betaine was supplemented in the maternal diets during the whole length of gestation It was concluded that supplementation of betaine at 3g/kg in the diet of pregnant sows improved the antioxidant capacity of piglets borne to them.

Author(s):  
Hasan Haci Yeter ◽  
Berfu Korucu ◽  
Elif Burcu Bali ◽  
Ulver Derici

Abstract. Background: The pathophysiological basis of chronic kidney disease and its complications, including cardiovascular disease, are associated with chronic inflammation and oxidative stress. We investigated the effects of active vitamin D (calcitriol) and synthetic vitamin D analog (paricalcitol) on oxidative stress in hemodialysis patients. Methods: This cross-sectional study was composed of 83 patients with a minimum hemodialysis vintage of one year. Patients with a history of any infection, malignancy, and chronic inflammatory disease were excluded. Oxidative markers (total oxidant and antioxidant status) and inflammation markers (C-reactive protein and interleukin-6) were analyzed. Results: A total of 47% (39/83) patients were using active or analog vitamin D. Total antioxidant status was significantly higher in patients with using active or analog vitamin D than those who did not use (p = 0.006). Whereas, total oxidant status and oxidative stress index were significantly higher in patients with not using vitamin D when compared with the patients who were using vitamin D preparation (p = 0.005 and p = 0.004, respectively). On the other hand, total antioxidant status, total oxidant status, and oxidative stress index were similar between patients who used active vitamin D or vitamin D analog (p = 0.6; p = 0.4 and p = 0.7, respectively). Conclusion: The use of active or selective vitamin D analog in these patients decreases total oxidant status and increases total antioxidant status. Also, paricalcitol is as effective as calcitriol in decreasing total oxidant status and increasing total antioxidant status in patients with chronic kidney disease.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 130
Author(s):  
Munehiro Kitada ◽  
Yoshio Ogura ◽  
Itaru Monno ◽  
Jing Xu ◽  
Daisuke Koya

Enhanced oxidative stress is closely related to aging and impaired metabolic health and is influenced by diet-derived nutrients and energy. Recent studies have shown that methionine restriction (MetR) is related to longevity and metabolic health in organisms from yeast to rodents. The effect of MetR on lifespan extension and metabolic health is mediated partially through a reduction in oxidative stress. Methionine metabolism is involved in the supply of methyl donors such as S-adenosyl-methionine (SAM), glutathione synthesis and polyamine metabolism. SAM, a methionine metabolite, activates mechanistic target of rapamycin complex 1 and suppresses autophagy; therefore, MetR can induce autophagy. In the process of glutathione synthesis in methionine metabolism, hydrogen sulfide (H2S) is produced through cystathionine-β-synthase and cystathionine-γ-lyase; however, MetR can induce increased H2S production through this pathway. Similarly, MetR can increase the production of polyamines such as spermidine, which are involved in autophagy. In addition, MetR decreases oxidative stress by inhibiting reactive oxygen species production in mitochondria. Thus, MetR can attenuate oxidative stress through multiple mechanisms, consequently associating with lifespan extension and metabolic health. In this review, we summarize the current understanding of the effects of MetR on lifespan extension and metabolic health, focusing on the reduction in oxidative stress.


Signals ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 138-158
Author(s):  
Hsiang-Wei Wang ◽  
Cameron Bringans ◽  
Anthony J. R. Hickey ◽  
John A. Windsor ◽  
Paul A. Kilmartin ◽  
...  

Oxidative stress plays a pivotal role in the pathogenesis of many diseases, but there is no accurate measurement of oxidative stress or antioxidants that has utility in the clinical setting. Cyclic Voltammetry is an electrochemical technique that has been widely used for analyzing redox status in industrial and research settings. It has also recently been applied to assess the antioxidant status of in vivo biological samples. This systematic review identified 38 studies that used cyclic voltammetry to determine the change in antioxidant status in humans and animals. It focusses on the methods for sample preparation, processing and storage, experimental setup and techniques used to identify the antioxidants responsible for the voltammetric peaks. The aim is to provide key information to those intending to use cyclic voltammetry to measure antioxidants in biological samples in a clinical setting.


2020 ◽  
Vol 245 (14) ◽  
pp. 1260-1267
Author(s):  
Sylwia Dzięgielewska-Gęsiak ◽  
Dorota Stołtny ◽  
Alicja Brożek ◽  
Małgorzata Muc-Wierzgoń ◽  
Ewa Wysocka

Insulin resistance (IR) may be associated with oxidative stress and leads to cardiovascular disorders. Current research focuses on interplay between insulin-resistance indices and oxidant-antioxidant markers in elderly individuals with or without insulin-resistance. The assessment involved anthropometric data (weight, height, BMI, percentage of body fat (FAT)) and biochemical tests (glucose, lipids, serum insulin and plasma oxidant-antioxidant markers: Thiobarbituric Acid-Reacting Substances (TBARS), Cu,Zn-superoxide dismutase (SOD-1) and total antioxidant status). Insulin resistance index (IR) assuming a cut-off point of 0.3 allows to divides groups into: insulin sensitive group (InsS) IR < 0,3 ( n = 35, median age 69.0 years) and insulin-resistant group (InsR) IR ≥ 0.3 ( n = 51, median age 71.0 years). Lipids and antioxidant defense system markers did not differentiate the investigated groups. In the InsR elderly group, the FAT was increased ( P < 0.000003) and TBARS ( P = 0.008) concentration decreased in comparison with InsS group. A positive correlation for SOD-1 and total antioxidant status ( P < 0.05; r =  0.434) and a negative correlation for TBARS and age ( P < 0.05 with r = −0.421) were calculated in InsR individuals. In elderly individuals, oxidative stress persists irrespective of insulin-resistance status. We suggest that increased oxidative stress may be consequence of old age. An insulin action identifies those at high risk for atherosclerosis, via congruent associations with oxidative stress and extra- and intra-cellular antioxidant defense systems. Thus, we maintain that insulin-resistance is not the cause of aging. Impact statement Insulin resistance is associated with oxidative stress leading to cardiovascular diseases. However, little research has been performed examining elderly individuals with or without insulin-resistance. We demonstrate that antioxidant defense systems alone is not able to abrogate insulin action in elderly individuals at high risk for atherosclerosis, whereas the combined oxidant-antioxidant markers (thiobarbituric acid-reacting substances (TBARS), Cu,Zn-superoxide dismutase (SOD-1), and total antioxidant status (TAS)) might be more efficient and perhaps produce better clinical outcome. In fact, a decrease in oxidative stress and strong interaction between antioxidant defense can be seen only among insulin-resistant elderly individuals. This is, in our opinion, valuable information for clinicians, since insulin-resistance is considered strong cardiovascular risk factor.


2019 ◽  
Vol 230 ◽  
pp. 103821 ◽  
Author(s):  
Stefano Cecchini ◽  
Francesco Fazio ◽  
Marilena Bazzano ◽  
Anna Rocchina Caputo ◽  
Claudia Giannetto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document