scholarly journals Evaluation of the Use of SPAD-502 Chlorophyll meter for non-destructive estimation of nitrogen status of tea leaf (Camellia sinensis L. Kuntze)

Author(s):  
Wahono A. Wahono ◽  
D. Indradewa ◽  
B. H. Sunarminto ◽  
E. Haryono ◽  
D. Prajitno

Efficient nutrient management requires estimating factual fertilizer requirements. This study was aimed to test the use of chlorophyll meter SPAD-502 to estimate the nitrogen status of tea maintenance leaf. The test was carried out by correlating the SPAD readings with destructively measured leaf nitrogen content using samples oGbtained from nitrogen fertilizer dosage experiments. Observations were made at 15, 32, 45 and 62 days after the application of N fertilizer treatments. The results showed that the SPAD readings and total nitrogen leaf content correlated significantly with the time of observation. Estimation of leaf N content based on the SPAD readings follows linear line equation y = 0.0311x + 1.5856 with coefficient determinant (R²) = 0.62 significantly at P less than 0.01. It was concluded that SPAD-502 chlorophyll meter is reliable to assess the leaf nitrogen content of tea maintenance leaf and is adequate to predict future nitrogen fertilizer requirements.

Author(s):  
Caixia Yin ◽  
Jiao Lin ◽  
Lulu Ma ◽  
Ze Zhang ◽  
Tongyu Hou ◽  
...  

AbstractStudy the response mechanism of Canopy spectral reflectance (CSR) to cotton nitrogen fertilizer, propose the sensitive band and center wavelength of cotton leaf nitrogen content (LNC), and compare the response characteristics of various vegetation indexes to LNC, propose a vegetation index that responds well to LNC and construct estimating model. This experiment sets five nitrogen fertilizer levels, namely N0 (control), N120 (120 kg/hm2), N240 (240 kg/hm2), N360 (360 kg/hm2), N480 (480 kg/hm2). Among them, referring to the conventional nitrogen fertilizer is applied by local farmers (N330, 330 kg/hm2). The results showed the following: (1) Visible light and near-infrared (NIR) can be used as two large ranges for precise monitoring of nitrogen, especially the CSR in the NIR range differs significantly under different nitrogen fertilizers. In the early stage of cotton growth, the CSR decreased with the nitrogen application rate increase, in a suitable nitrogen environment (360 kg/hm2), and beyond N360, vice versa. In the later growth period, the CSR increases with the increase in nitrogen fertilizer. This trend is most evident in the short-wave NIR regions;(2) the range of 690–709 nm, 717–753 nm, and 940–958, which can be remote sensed by the spectral reflectance when cotton is affected in poor or rich nitrogen. The center wavelength corresponding to the nitrogen-sensitive band, respectively, are 697 nm, 735 nm, 953 nm, the band width can maintain 5–15 nm, generally not more than 20 nm;(3) compared with the ratio vegetation index, difference vegetation index, and normalized vegetation index, the combined vegetation index of more than two bands has a better effect on cotton LNC monitoring, of which the index (R560−R670)/(R560 + R670−R450), (R700−1.7 × R670 + 0.7 × R450)/(R700 + 2.3 × R670−1.3 × R450) are significantly related to LNC in this papers, and the correlation coefficients can reach, respectively, 0.935* and 0.936*. These findings help to estimate the model of LNC. The model is as follows: Y = 19.883 × x + 42.285, where x refers to the combined vegetation index (R700−1.7 × R670 + 0.7 × R450)/(R700 + 2.3 × R670−1.3 × R450), Y is LNC, but the model accuracy will be affected in the crop different phenological stage, and the model has the highest monitoring accuracy during the bud period.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 578c-578
Author(s):  
Lailiang Cheng ◽  
Sunghee Guak ◽  
Leslie H. Fuchigami

Fertigation of young Fuji/M26 apple trees (Malus domestica Borkh.) with different nitrogen concentrations by using a modified Hoagland solution for 6 weeks resulted in a wide range of leaf nitrogen content in recently expanded leaves (from 0.9 to 4.4 g·m–2). Net photosynthesis at ambient CO2, carboxylation efficiency, and CO2-saturated photosynthesis of recently expanded leaves were closely related to leaf N content expressed on both leaf area and dry weight basis. They all increased almost linearly with increase in leaf N content when leaf N < 2.4 g·m–2, leveled off when leaf N increased further. The relationship between stomatal conductance and leaf N content was similar to that of net photosynthesis with leaf N content, but leaf intercellular CO2 concentration tended to decrease with increase in leaf N content, indicating non-stomatal limitation in leaves with low N content. Photosynthetic nitrogen use efficiency was high when leaf N < 2.4 g·m–2, but decreased with further increase in leaf N content. Due to the correlation between leaf nitrogen and phosphorus content, photosynthesis was also associated with leaf P content, but to a lesser extent.


2021 ◽  
Vol 13 (4) ◽  
pp. 739
Author(s):  
Jiale Jiang ◽  
Jie Zhu ◽  
Xue Wang ◽  
Tao Cheng ◽  
Yongchao Tian ◽  
...  

Real-time and accurate monitoring of nitrogen content in crops is crucial for precision agriculture. Proximal sensing is the most common technique for monitoring crop traits, but it is often influenced by soil background and shadow effects. However, few studies have investigated the classification of different components of crop canopy, and the performance of spectral and textural indices from different components on estimating leaf nitrogen content (LNC) of wheat remains unexplored. This study aims to investigate a new feature extracted from near-ground hyperspectral imaging data to estimate precisely the LNC of wheat. In field experiments conducted over two years, we collected hyperspectral images at different rates of nitrogen and planting densities for several varieties of wheat throughout the growing season. We used traditional methods of classification (one unsupervised and one supervised method), spectral analysis (SA), textural analysis (TA), and integrated spectral and textural analysis (S-TA) to classify the images obtained as those of soil, panicles, sunlit leaves (SL), and shadowed leaves (SHL). The results show that the S-TA can provide a reasonable compromise between accuracy and efficiency (overall accuracy = 97.8%, Kappa coefficient = 0.971, and run time = 14 min), so the comparative results from S-TA were used to generate four target objects: the whole image (WI), all leaves (AL), SL, and SHL. Then, those objects were used to determine the relationships between the LNC and three types of indices: spectral indices (SIs), textural indices (TIs), and spectral and textural indices (STIs). All AL-derived indices achieved more stable relationships with the LNC than the WI-, SL-, and SHL-derived indices, and the AL-derived STI was the best index for estimating the LNC in terms of both calibration (Rc2 = 0.78, relative root mean-squared error (RRMSEc) = 13.5%) and validation (Rv2 = 0.83, RRMSEv = 10.9%). It suggests that extracting the spectral and textural features of all leaves from near-ground hyperspectral images can precisely estimate the LNC of wheat throughout the growing season. The workflow is promising for the LNC estimation of other crops and could be helpful for precision agriculture.


2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


Author(s):  
Lucas Prado Osco ◽  
Ana Paula Marques Ramos ◽  
Érika Akemi Saito Moriya ◽  
Maurício de Souza ◽  
José Marcato Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document