scholarly journals Genetic variability, heritability and genetic advance studies in pea (Pisum sativum L.) for quantitative characters

Author(s):  
Shalini Singh ◽  
Vinay Verma ◽  
B. Singh ◽  
V. R. Sharma ◽  
Mukesh Kumar

An experiment was conducted to determine the magnitude of genetic variability, heritability and genetic advance as per cent of mean among fifty-five genotypes of pea using eleven quantitative characters viz., days to 50% flowering, plant height, number of first fruiting node, length of first fruiting node, number of pods per plant, length of pod, width of pod, number of seeds per pods, green pod yield per plant, seed yield per plant and shell weight per plant. The results of ANOVA showed significant differences among the genotypes for all the characters indicating the existence of wide spectrum of variability among the genotypes. The phenotypic coefficient of variation (PCV) was quite higher than the corresponding genotypic coefficient of variation (GCV). High value of GCV and PCV was recorded for seed yield per plant, number of pods per plant, shell weight per plant, green pod yield per plant, plant height, length of first fruiting node and number of first fruiting node. All the characters showed high magnitude of heritability in broad sense (>60%) ranged from 83.91% (width of pod) to 98.84% (number of pods per plant). Further, high heritability coupled with high genetic advance as percentage of mean (>20%) was observed for all the characters except days to 50 % flowering suggesting that these characters are genetically controlled by additive (heritable) gene action and can be utilized for pea improvement through selection. The genotypes which showed superior results for the objectives under study were VRP-383, VRP-311, VRP-320 and Kashi Shakti and can be utilized for further breeding programme of pea.

2014 ◽  
Vol 69 (1) ◽  
pp. 25-34
Author(s):  
Tesfaye Walle ◽  
Adugna Wakjira ◽  
Tewodros Mulualem

ABSTRACT This study was carried out with the objective to estimate the genotypic variability and other yield related traits of Ethiopian mustard in North West Ethiopia. A total of 36 genotypes of Ethiopian mustard were considered for this study. Analysis of variance was computed to contrast the variability within the collected genotypes based on yield and other yield related traits. The results revealed highly significant values(p<0.01) for days to maturity, grain filling period, number of pod per plot, secondary branches per plant, harvest index, seed yield per plot, seed yield per hectare and oil content. Significant differences (p<0.05) were noted for days to flowering, plant height, primary branch per plant, biomass per plot, oil yield per plot differences among the genotypes. Genotypic coefficient of variation (GCV %) was lower than phenotypic coefficient of variation (PCV %) for all the traits studied. High genetic advance with heritability was observed in the following characters; plant height, biomass of the plant, number of secondary branch per plant and grain filling period. There are variations in the extent of genetic variability, heritability and genetic advance of traits which can facilitate selection for further improvement of important traits of Ethiopian mustard. Therefore, it can be concluded that the variability within Ethiopian mustard genotypes collected from different areas of northern Ethiopia is high and vital for better crop improvement.


Author(s):  
Kesoju Ravali ◽  
J. E. Jahagirdar ◽  
Chetana Singin ◽  
Sheetal Tirkey ◽  
S. S. Deshmukh

Genetic variability studies were useful for effective selection in a crop species. Presence of desirable variation and the amount of that variation which is heritable is the primary requirement of any breeding program for the crop improvement. Therefore any breeding program for crop improvement depends majorly on the knowledge pertaining to genetic variability, heritability and genetic advance. The genetic variability study was carried out for yield and yield contributing traits in thirty-seven genotypes of rabi sorghum with three checks namely M 35-1, Phule Suchitra and CSV-22-R at Sorghum Research Station, V.N.M.K.V., Parbhani during rabi 2019. A randomized block design was used with three replications and these treatments were evaluated and data pertaining to eleven traits were recorded with the objective to estimate the genetic variability for the quantitative traits. This investigation revealed presence of highly significant differences among the genotypes indicating presence of large amount of variability in all the eleven characters studied. The study indicated presence of higher estimates of phenotypic coefficient of variation (PCV) for all the traits when compared to genotypic coefficient of variation (GCV) and these estimates are of lower magnitude. Among the forty genotypes studied VJV 107, VJV 106, PEC 30, RSV 1921, RSV 1945 and RSV 1984 were considered as the superior genotypes as these recorded better performance. Higher estimates of GCV and PCV were recorded for the traits; days to 50 per cent flowering, plant height, panicle length, panicle width, fodder yield per plant, biological yield per plant, harvest index and grain yield per plant indicating selection for higher values of these traits of sorghum would be effective. Whereas high heritability coupled with moderate to high genetic advance was observed for traits like plant height, fodder yield per plant and total biomass per plant.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Massaoudou Hamidou ◽  
Abdoul Kader M. Souley ◽  
Issoufou Kapran ◽  
Oumarou Souleymane ◽  
Eric Yirenkyi Danquah ◽  
...  

Sorghum is the second most important cereal crop in Niger. The crop is grown in a wide range of ecological environments in the country. However, sorghum grain yield in Niger is limited by both abiotic and biotic constraints. Recombinant inbred lines derived from the cross of a local variety with a midge resistant variety and two local checks were evaluated during the 2015 rainy season across two planting dates in two environments in Niger. The objective was to investigate genetic variability for yield, yield related traits, and resistance to sorghum midge. High phenotypic coefficient of variation (PCV) versus genotypic coefficient of variation (GCV) was observed in both sites and planting dates. Across planting dates at both Konni and Maradi, grain yield, plant height, panicle weight, and midge damage had high heritability coupled with high estimates of genetic advance. At Konni, high genetic advance coupled with high heritability was detected for grain yield, plant height, panicle weight, and resistance to midge. There were similar results at Maradi for grain yield, plant height, and panicle weight. Therefore, selection might be successful for the above characters in their respective environments.


2021 ◽  
Vol 22 (2) ◽  
pp. 92
Author(s):  
Sashi Lamichhane ◽  
Nav Raj Adhikari ◽  
Bishwas K.C. ◽  
Sapana Thapa

<p>Rice is an essential staple food in Nepal but researches and varietal improvement programs are rarely carried out due to inadequate variability study. The field study was carried to diagnose the influence of genetic and environmental factors on yield traits to aid future rice breeding programs. Twelve genotypes were arranged in randomized complete block design with three replications from July to November 2019 at the research field of the Institute of Agriculture and Animal Science, Tribhuvan University, in the hilly area of Nepal. Analysis of variance showed significant difference for days to 50% booting, days to 50% flowering, plant height, panicle length, flag leaf area, filled grains per panicle, unfilled grains per panicle, fertility percentage, effective tillers m<sup>-2</sup>, straw yield, grain yield, 1000-grain weight, and harvesting index indicating the presence of variation in genotypes. LPN BR-1615 was the most promising genotype in grain yield. The values of Phenotypic Coefficient of Variation (PCV) were higher than Genotypic Coefficient of Variation (GCV) for each trait and low difference between them was found for days to 50% booting, days to 50% flowering, plant height, panicle length, grain yield, thousand-grain weight, fertility percentage, and harvesting index. Plant height, effective tillers m<sup>-2</sup>, and grain yield showed high heritability (i.e. 93.2%, 60.5% and 92.6%, respectively) and higher genetic advance as percentage of mean (i.e. 46.5, 34.6 and 50.1, respectively) . Thus, the experiment revealed that selections favoring plant height, effective tillers m<sup>-2</sup>, and grain yield would help in effective breeding programs of rice in future.</p>


2018 ◽  
Vol 10 (2) ◽  
pp. 797-804
Author(s):  
Satnam Singh Nagar ◽  
Pradeep Kumar ◽  
S.R. Vishwakarma ◽  
Gyanendra Singh ◽  
B. S. Tyagi

A study was conducted for estimating genetic variability and characters association for eleven yield components using 169 genotypes (13 parents, 78 F1 and 78 F2) of bread wheat through half-diallel mating design during rabi season 2012-13 and 2013-14. The genetic variability, heritability in broad sense, genetic advance, correlation coefficients and path analysis were carried out for the assessment of genotypes through eleven yield component traits namely; days to 50% flowering, days to maturity, plant height, spike length, number of effective tillers per plant, number of grains per spikelet, number of grains per spike, 1000-grain weight, biological yield per plant, harvest index and grain yield per plant. Analysis of variance showed significant differences (at1% level of significance) for all the traits under study in both the generations (F1 and F2). The phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were high for plant height followed by number of effective tillers per plant, biological yield per plant, grain yield per plant, while high heritability coupled with high genetic advance were recorded for plant height and spike length in both F1 and F2 generations, respectively. Grain yield per plant was positively and significantly associated with a number of effective tillers per plant, spike length, number of grains per spike, 1000-grain weight, biological yield per plant and harvest index while significantly but negatively associated with plant height. Path analysis revealed that the traits namely biological yield per plant, number of effective tillers per plant, number of grains per spike, plant height and harvest index exhibited positive direct effects on grain yield at both phenotypic and genotypic level in both generation (F1 and F2). These results, thereby suggests that yield improvement in breads wheats could be possible by emphasizing these traits while making selections in early generations.


2016 ◽  
Vol 8 (3) ◽  
pp. 1634-1637
Author(s):  
Pravin Kumar Sharma ◽  
D. P. Mishra ◽  
Amit Pandey

The experiment comprising 30 okra (Abelmoschus esculentus) genotypes were grown and analysed for yield and its attributing traits at the Department of Vegetable science, Kumarganj, Faizabad during Zaid (2011) period. All the characters studied showed a wide range of variation. The variability for yield among the accessionsevaluated was also remarkable. The magnitude phenotypic coefficient of variation was higher than genotypic coefficient of variation for all traits. Both phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were high for plant height (11.10 and 10.60, respectively). Fruit weight exhibited low value of GCV (2.31) and PCV (4.74) and likely to show less response under selection. High heritability (91.3) with high genetic advance (26.74) was recorded for plant height, whereas, ridges per fruit had high heritability (97.0) with moderate genetic advance (18.45). This study aimed to evaluate okra genotypes for variability with a view to providing information on the development of high yielding genotypes to meet the growing food demand of the populace.


2016 ◽  
Vol 20 (2) ◽  
pp. 51 ◽  
Author(s):  
Ratri Tri Hapsari

<p>Estimation of Genetic Variability and Correlation Among Early Maturity Mungbean Yield Components. Ratri T. Hapsari. Early maturity mungbean [Vigna radiata (L.) Wilczek] is very important to avoid drought stress, pest and disease attack as well as increase the index planting. The aims of this research was to estimate genetic variability and correlation. The genetic study included heritability, coefficient of genetic variability, genetic advance and correlation among yield components so that it can be used as selection criteria for early maturity mungbean. A total of 145 accessions of mungbean were tested at Muneng farm station in March-June 2010 using a randomized block design, with two replicates. Each accession was planted at 0.8 m x 4 m with spacing 40 cm x 10 cm, with two plants/hole. Fertilization was done by adding 50 kg urea, 75 kg SP36, and 75 kg KCl/ha, at the time of planting. The results showed that mungbean accesions had significant differences in all characters tested. The genetic variance value of all characters was broad with high broadsense heritability estimates, except for number of pods/ cluster and seed number/pod. Genetic advance of all characters were high, except for seed number/pod. The phenotypic correlation between 1000 seeds weight and pod length with seed yield were positive significant while plant height, flowering days, days to maturity, and number of pods per plant had negative significant correlation with its yield. Therefore, plant height, days to maturity, pod lenght, 1000 seeds weight and seed yield could be used as selection criteria based on estimating value of genetic variability, correlation with yield and economic value. There were five genotype which have index value above 20, i.e MLGV 0353, MLGV 0362, MLGV 0354, MLGV 0358, and MLGV 0351.</p><p> </p><p><strong>Abstrak</strong></p><p>Kacang hijau [Vigna radiata (L.) Wilczek] berumur genjah berperan penting untuk menghindari cekaman kekeringan, serangan hama penyakit, dan meningkatkan indeks pertanaman. Penelitian ini bertujuan untuk mengetahui nilai duga parameter genetik dan korelasi antar komponen hasil sehingga dapat digunakan sebagai kriteria seleksi kacang hijau berumur genjah. Sebanyak 145 genotipe kacang hijau diuji di KP Muneng pada bulan Maret sampai dengan Juni 2010 menggunakan Rancangan Acak Kelompok dengan dua ulangan. Setiap aksesi ditanam pada plot 0,8 m x 4 m dengan jarak tanam 40 cm x 10 cm, dua tanaman/lubang. Pemupukan dilakukan dengan 50 kg urea, 75 kg SP36, dan 75 kg KCl per hektar pada saat tanam. Parameter yang diamati adalah tinggi tanaman, umur 50% berbunga, umur 80% masak, jumlah polong/tangkai, jumlah polong/tanaman, panjang polong, jumlah biji/polong, bobot 1.000 biji, dan bobot biji/plot. Hasil penelitian menunjukkan bahwa genotipe yang diuji memiliki keragaman semua sifat yang diamati. Keragaman genetik dan fenotipik tergolong luas. Heritabilitas arti luas tergolong tinggi, kecuali jumlah polong/tangkai dan jumlah biji/polong tergolong sedang. Kemajuan genetik seluruh karakter tinggi, kecuali jumlah biji/polong. Korelasi antara bobot 1.000 biji dan panjang polong bernilai positif nyata dengan bobot biji/plot, sedangkan tinggi tanaman, umur berbunga, umur masak, dan jumlah polong per tanaman berkorelasi negatif nyata. Berdasarkan nilai duga parameter genetik, korelasi antarhasil, dan nilai ekonomisnya, maka tinggi tanaman, umur masak, panjang polong, bobot 1.000 biji dan bobot biji per plot dapat dijadikan kriteria seleksi indeks. Terdapat lima genotipe memiliki nilai indeks lebih dari 20, yaitu MLGV 0353, MLGV 0362, MLGV 0354, MLGV 0358, dan MLGV 0351.</p>


Author(s):  
Md. Nur-E-Nabi ◽  
Md. Ehsanul Haq ◽  
Montasir Ahmed ◽  
Md. Monir Hossain ◽  
Md. Shefat-al-Maruf ◽  
...  

The present study was conducted involving 62 F3 genotypes of Brassica napus L. at the experimental farm of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh to ponder the genetic variability, phenotypic, genotypic and environmental coefficient of variation, heritability and genetic advance, correlation, path coefficient and genetic diversity analysis in a randomized complete block design (RCBD) with sixty-two genotypes (treatments) with three replications during November 2014 to February 2015. The investigations aimed to select the best segregating genotypes for the yield improvement of Brussica napus (rapeseed). Analysis of variance indicated that the genotypes were found significantly different for all the characters considered. The relative phenotypic coefficient of variation (PCV) was higher than the genotypic coefficient of variation (GCV) for all the traits investigated. The high GCV value was observed for the number of siliqua per plant (NSP), plant height (PH), silique length (SL), number of seed per silique (NSS) and seed yield per plant (SYP) indicated high broad sense heritability. The significant positive correlation with seed yield per plant (SYP) was found in plant height (PH) (0.368**), the number of primary branches per plant (NPB) (0.332**), number of secondary branches per plant (NSB) (0.382**), number of silique per plant (NSP) (0.549**), and siliqua length (SL) (0.037**). The results of path coefficient analysis uncovered that plant height (PH) (0.582), days to 50% flowering (50F) (0.390), days to maturity (DM) (0.575), number of primary branches per plant (NPB) (0.678), number of secondary branches per plant (NSB) (0.182),and thousand seed weight (TSW) (0.289) had a positive direct impact on seed yield per plant (SYP) and thus it was concluded that these traits could be exploited for the enhancement of yield potential of rapeseed. This study showed that based on the agronomic performance execution, genotypes G8, G14, G19, G21, G47, and G55 might be proposed for future hybridization program in Bangladesh and this could help rapeseed breeders to upgrade their breeding activities.


1970 ◽  
Vol 9 (1-2) ◽  
pp. 29-36 ◽  
Author(s):  
MA Zaman ◽  
M Tuhina-Khatun ◽  
MZ Ullah ◽  
M Moniruzzamn ◽  
KH Alam

An experiment was conducted at the Research farm of Regional Agricultural Research Station, BARI, Hathazari, Chittagong during Rabi season (December to April), 2009-2010 for estimation of genetic variability, genetic parameters and correlation coefficient among different yield components in a randomized block design with three replications. Thirty four groundnut genotypes were tested in the experiment. Highly significant variations were observed among the genotypes for all the characters studied. The highest genetic coefficient of variation was observed for karnel yield per hectare, followed by karnel yield per plant, branches per plant, immature and mature nuts per plant, 100 kernal weight and plant height. The highest heritability was observed in karnel yield per pant (95.08%), followed by karnel yield per hectare (94.38%), 100 kernal weight (87.01%), immature and mature nuts per plant (82.24%, 80.32%), branches per plant (79.54%) and 100 nut weight (78.98%), while high values of genetic advance were obtained in all the characters except days to maturity and days to 50% flowering. The seed yield per plant showed the highly significant and positive association with nut size, number of nuts per plant, karnel size and days to 50% flowering. The number of mature nuts per plant had high positive direct effect on seed yield per hectare followed by nut size, shelling percentage, days to 50% flowering and days to maturity. Therefore, branches per plant, plant height, nuts per plant, nut size, karnel size, days to 50% flowering, shelling percentage and days to maturity were identified to be the important characters which could be used in selection for yield. Keywords: Genetic variability; heritability; genetic advance; groundnut DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9476 The Agriculturists 2011; 9(1&2): 29-36


2018 ◽  
Vol 10 (2) ◽  
pp. 773-778
Author(s):  
Channappagouda Patil ◽  
Deepak Koujalagi

The aim of the present investigation was to estimate the genetic variability parameters in Wheat (Triticum dicoccum) F2 population of the cross DDK1025 X ML-1. The traits involved in study were grain yield, threshability, rachis percent and other yield contributing traits such as tiller number, number of grains per spike, number of spikelet’s per spike, etc. and the genetic variability parameters estimated are mean, range, Phenotypic coefficient of variation (PCV), Genotypic coefficient of variation (GCV), heritability and genetic advance over mean. The results obtained from the study reveals higher mean and wider range for all the traits especially for plant height, tiller number, spikelets per spike, number of grains per spikelet, spike length, grain yield per plant, threshability and rachis. High degree of PCV with moderate GCV was observed for the traits like number of tiller per plant (20.96 PCV and 15.96 GCV), number of grains per spike (21.92 PCV and 18.79 GCV), rachis % (22.5 PCV and 19.10 GCV) and grain yield per plant (20.07 PCV and 18.10) . Heritability and genetic advance was recorded to high for all the traits in both the populations. On the basis of an overall consideration of the genetic variability parameters it may be concluded that F2 population of the cross, DDK-1025 x ML-1 have the potential source for improving the yield and its associated traits and also offering some scope in altering the plant height.


Sign in / Sign up

Export Citation Format

Share Document