Physiological Divergence in Green Gram [Vigna radiata (L.) Wilczek] Genotypes for Drought and High Temperature Stress Tolerance During Flowering Phase

Author(s):  
M. Jincy ◽  
V. Babu Rajendra Prasad ◽  
A. Senthil ◽  
P. Jeyakumar ◽  
N. Manivannan

Background: Drought and high temperature stress limits the crop production. Development of drought and high temperature tolerant cultivars that can withstand and yield better under adverse conditions is very much important to ensure the food and nutritional security. Green gram is one of the important pulse crops with high nutritional and economic value. Among the various stages of plant growth and development, reproductive stage is highly sensitive to drought and high temperature stress across all species. The main objective of this study was to evaluate green gram germplasm collection and identification of elite greengram genotypes that can withstand drought and high temperature stresses at reproductive stage. Methods: The experiment was conducted during March-April, 2019, at National Pulses Research Centre, Vamban, Pudukottai district, Tamil Nadu. To study the influence of combined drought and high temperature stress during reproductive stage, the green gram genotypes were sown in pots. Six pots were maintained for each genotype of which three were maintained at 100% field capacity (control) and for another three; drought stress (50% field capacity for 5 days) was imposed combined with high temperature stress (36 ± 2°C) during reproductive phase (35 Days after sowing). At the end of stress period, physiological and biochemical analysis were carried out to identify the tolerant green gram genotypes against drought and high temperature stresses.Result: In the present study, drought and high temperature stress has negative impact on green gram physiology. Among the genotypes screened for their tolerance at reproductive stage, the following green gram genotypes viz., TARM 1, VGG 15029, VGG 17003, VGG 17004, VGG 17006, VGG 17010 and VGG 17019 were found to withstand drought and high temperature stress and maintain high total chlorophyll content, relative water content and chlorophyll stability index. These green gram gramplasm can be used in pulse breeding program to evolve resilient green gram varieties. Screening of 29 green gram genotypes for drought and high temperature stress during reproductive stage were carried out by maintaining the drought stress (50% field capacity for 5 days) combined with high temperature stress (36 ± 2°C) during reproductive stage (35 days after sowing) by pot culture experiment. Total chlorophyll, relative water content, chlorophyll stability index (CSI), oxidants and antioxidant activity were quantified to identify the tolerant green gram genotypes against drought and high temperature stresses. Based on physiological and biochemical parameters, the following green gram genotypes viz., TARM 1, VGG 15029, VGG 17003, VGG 17004, VGG 17006, VGG 17010 and VGG 17019 were found to withstand and tolerate combined drought and high temperature stresses at flowering stage.

2020 ◽  
Author(s):  
S MukeshSankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
S.P Singh ◽  
Roshan Kumar ◽  
...  

AbstractEnvironmental stresses negatively influence survival, biomass and grain yield of most crops. Towards functionally clarifying the role of heat responsive genes in Pearl millet under high temperature stress, the present study were carried out using semi quantitative RT- PCR for transcript expression profiling of hsf and hsps in 8 different inbred lines at seedling stage, which was earlier identified as thermo tolerant/susceptible lines through initial screening for thermo tolerance using membrane stability index among 38 elite genotypes. Transcript expression pattern suggested existence of differential response among different genotypes in response to heat stress in the form of accumulation of heat shock responsive gene transcripts. Genotypes WGI 126, TT-1 and MS 841B responded positively towards high temperature stress for transcript accumulation for both Pgcp 70 and Pghsf and also had better growth under heat stress, whereas PPMI 69 showed the least responsiveness to transcript induction supporting the membrane stability index data for scoring thermotolerance, suggesting the efficacy of transcript expression profiling as a molecular based screening technique for identification of thermotolerant genes and genotypes at particular crop growth stages. As to demonstrate this, a full length cDNA of Pghsp 16.97 was cloned from the thermotolerant cultivar, WGI 126 and characterized for thermotolerance. The results of demonstration set forth the transcript profiling for heat tolerant genes can be a very useful technique for high throughput screening of tolerant genotypes at molecular level from large cultivar collections at seedling stage.


2021 ◽  
pp. 146-151
Author(s):  
L. Priyanandhini ◽  
M. K. Kalarani ◽  
A. Senthil ◽  
N. Senthil ◽  
K. Anitha ◽  
...  

Maize (Zea mays L.) is the most important food and feed crop grown under diverse soil and climatic conditions. Among the cereals, demand for maize is increasing year after year, but fluctuation in climatic conditions especially the temperature extremes is the current and future threat in maize cultivation. Each degree Celsius increase in global mean temperature causes yield reduction up to 7.4 per cent in maize. The high temperature stress impact at the reproductive stage affects grain filling rate and duration. Adaptation of maize crop to future warmer climatic conditions requires a better understanding of physiological responses to elevated temperatures. With this view, a pot culture experiment was conducted at the Department of Crop Physiology, TNAU, Coimbatore during the summer season of 2020. Two maize inbreds viz., UMI 1230 and CBM-DL- 322 were taken for the study and exposed to high temperature stress treatments viz., T1 - ambient, T2 - ambient+4°C and T3 - ambient+6°C (44°C) for 10 days during the reproductive stage to assess the changes in biochemical and yield traits. The ambient+4ºC treatment revealed that the maize inbred line CBM-DL-322 recorded lower malondialdehyde content with over production of antioxidant enzyme activity (superoxide dismutase, catalase and ascorbate peroxidase). Cob weight and seed set parentage showed a negative correlation with both elevated temperatures. It is concluded that the maize inbreds line CBM-DL- 322 performed better at an elevated temperature at ambient+4°C and recorded more cob weight (57.09g) compared to UMI 1230 inbred (43.56g).


Author(s):  
Trisha Sinha ◽  
Shailesh Kumar ◽  
Ajay Kumar Singh

A pot experiment was carried out with six chickpea genotypes viz. KPG-59, IPC-2013-74 and NDG-15-6 (tolerant group); and KWR-108, BG-3075 and BG-3076 (susceptible group) to study the responses of these genotypes under salinity stress (4.20 dSm-1) with normal sowing, high temperature (HT) stress with late sowing and their combination (saline soil + late sowing), and compared with control (non-stress) condition based on several physio-biochemical traits such as malondialdehyde content (MDA), membrane stability index (MSI), relative water content (RWC) and proline in leaf at reproductive stage; and seed yield after harvesting. Both salinity and HT individually and in combination significantly affected the traits studied. Among the parameters, MDA increased under stress treatments over control, while MSI and RWC decreased for the same. However, combined stress exhibited hypo-additive effects for these parameters which might be due to developed cross-tolerance while facing salinity and HT stress in sequence. Increase in proline content under stress over control is an indication of osmotic adjustment in response to stress. These results might be good criteria in development of genotypes with improved response in terms of physio-biochemical traits and yield.


2021 ◽  
Author(s):  
Peng Zhu ◽  
Jennifer Burney

Abstract. Irrigation has important implications for sustaining global food production, enabling crop water demand to be met even under dry conditions. Added water also cools crop plants through transpiration; irrigation might thus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we use satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Our study shows that, unlike air temperature metrics, satellite-derived LST detects significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling is likely to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. The analysis also suggests that irrigation not only reduces water and temperature stress but also weakens the response of yield to these stresses. Specifically, temperature stress is significantly weakened for reproductive processes in irrigated crops. The attribution analysis further suggests that water and high temperature stress alleviation contributes to 65 % and 35 % of yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, untangling irrigation effects on both heat and water stress mitigation has important implications for designing agricultural adaptation strategies under climate change.


2018 ◽  
Vol 5 (02) ◽  
Author(s):  
Sonam Singh1 ◽  
Suphiya Khan ◽  
Jasdeep C. Padaria ◽  
Amolkumar U. Solanke

Under changing climatic conditions, high temperature stress is the most severe problem for the whole agriculture. Identification and utilization of crop plants which can sustain and yield better under high temperature conditions is need of the day. In this study, we established finger millet as thermotolerant crop. For this, we characterized thermotolerant cotton, thermosensitive wheat along with finger millet by MDA accumulation after heat stress and shown that finger millet is even better than cotton. Further, using seed germination test and growing seedlings at higher temperature, it was observed thatfinger millet was least affected at 42 oCwhereas germination percent and fresh weight reduced at 47 oC. With biochemical assay, it was shown that finger millet had very less difference at 42 oC as compared to 37 oC, however there is significant reduction at 47 oC in chlorophyll and carotenoid content and relative water content (RWC) percent whereas increase in electrolyte leakage (%) and H2O2 and O2 concentration. Still finger millet plants can tolerate temperature of 47 oC.Overall, the present study strongly identified finger millet as thermotolerant crop and can be utilized for allele mining of known genes and prospecting of novel genes for crop improvement for high temperature stress.


2020 ◽  
Vol 18 (1) ◽  
pp. 19-27
Author(s):  
Smaranika Mishra ◽  
R. H. Laxman ◽  
K. Madhavi Reddy ◽  
R. Venugopalan

AbstractBell pepper or sweet pepper (Capsicum annuum L. var. grossum) is highly susceptible to high-temperature stress (HT). Hence, search for donor across C. annuum for HT tolerance was undertaken by following Temperature Induction Response (TIR) technique. The induction and challenging temperature requirement for TIR screening were standardized in 1 d-old Capsicum seedlings. Forty Capsicum genotypes were evaluated based on the recovery growth (RG) and per cent reduction in recovery growth (%RRG) of the seedlings. The genotypes Punjab Guchhedar and Ajeet 1 were found to have maximum cellular level tolerance (CLT) to HT with higher RG and lower %RRG compared to the non-induced seedlings and HDC 75 was found to have minimum CLT. In order to confirm the findings, another experiment was conducted under managed stress and control conditions. Absolute yield obtained from both the environments were used to calculate stress tolerance indices such as heat susceptibility index, tolerance index, stress tolerance index, mean productivity, geometric mean productivity and yield stability index. Based on these tolerance indices, Punjab Guchhedar and Ajeet 1 were found to be highly tolerant and HDC 75 as highly susceptible. Further, the combined result of TIR and tolerance indices also gave the same result confirming Punjab Guchhedar and Ajeet 1 can be used as a donor for the future breeding programme aimed at evolving high-temperature-tolerant bell pepper cultivars. The result also confirms the fitness of TIR technique to screen Capsicum genotypes for tolerance to HT based on variability in acquired thermotolerance.


2019 ◽  
Vol 39 (9) ◽  
pp. 1583-1599 ◽  
Author(s):  
Jiazhi Shen ◽  
Dayan Zhang ◽  
Lin Zhou ◽  
Xuzhou Zhang ◽  
Jieren Liao ◽  
...  

Abstract To determine the mechanisms in tea plants responding to temperature stresses (heat and cold), we examined the global transcriptomic and metabolomic profiles of the tea plant cultivar ‘Suchazao’ under moderately low temperature stress (ML), severely low temperature stress (SL), moderately high temperature stress (MH) and severely high temperature stress (SH) using RNA-seq and high performance liquid chromatography tandem mass spectrometry/mass spectrometry (HPLC-MS/MS), respectively. The identified differentially expressed genes indicated that the synthesis of stress-resistance protein might be redirected to cope with the temperature stresses. We found that heat shock protein genes Hsp90 and Hsp70 played more critical roles in tea plants in adapting to thermal stress than cold, while late embryogenesis abundant protein genes (LEA) played a greater role under cold than heat stress, more types of zinc finger genes were induced under cold stress as well. In addition, energy metabolisms were inhibited by SH, SL and ML. Furthermore, the mechanisms of anthocyanin synthesis were different under the cold and heat stresses. Indeed, the CsUGT75C1 gene, encoding UDP-glucose:anthocyanin 5-O-glucosyl transferase, was up-regulated in the SL-treated leaves but down-regulated in SH. Metabolomics analysis also showed that anthocyanin monomer levels increased under SL. These results indicate that the tea plants share certain foundational mechanisms to adjust to both cold and heat stresses. They also developed some specific mechanisms for surviving the cold or heat stresses. Our study provides effective information about the different mechanisms tea plants employ in surviving cold and heat stresses, as well as the different mechanisms of anthocyanin synthesis, which could speed up the genetic breeding of heat- and cold-tolerant tea varieties.


2021 ◽  
Author(s):  
Caihui Wang ◽  
Min Chen ◽  
Bo Liu ◽  
Junhao Ning ◽  
Xia Lu ◽  
...  

Abstract Background: Bohai Red, a new Argopecten scallop strain selected from the hybrids between the Peruvian scallop, Argopecten purpuratus and the bay scallop northern subspecies, A. irradians irradians, is now one of the most cultured scallop strains in northern China. As one of a series of studies focusing on adaptation of Bohai Red scallops to fluctuations in environmental factors, this study aimed to examine the expression profile of Wnt genes in response to different temperature stresses in Bohai Red. Results: As Bohai Red scallops were originated from the hybrids between the Peruvian scallop and the bay scallop northern subspecies, we first identified all Wnt genes from the genomes of the Peruvian scallop and the bay scallop northern subspecies, as well as the bay scallop southern subspecies, A. i. concentricus. Twelve Wnt members were identified from the two subspecies of bay scallop, and 13 Wnt genes were found in the genome of the Peruvian scallop. Protein structure analyses showed that most Wnt genes poses all 5 conserved motifs except Wnt 1, Wnt 2, Wnt 6 and Wnt 9 in the bay scallops and Wnt2 and Wnt9 in the Peruvian scallop. Unexpectedly, Wnt8 gene was present while Wnt3 was absent in both the bay scallops and the Peruvian scallop. Phylogenetic analysis revealed that Wnt3 may have disappeared in the early evolution of mollusks. The expression profile of Wnt genes in Bohai Red exposed to different temperatures were examined by qRT-PCR. The results showed that expression of Wnt genes responded differentially to temperature changes. The Wnt genes such as Wnt1, Wnt6, Wnt7, Wnt11 and WntA that responded slowly to low and high temperature stresses may be related to the maintenance of basic homeostasis. Other Wnt genes such as Wnt4, Wnt9, Wnt5 and Wnt2 that responded rapidly to low temperature may play an important role in organismal protection against low temperature stress. And yet some Wnt genes including Wnt10, Wnt16, and Wnt8 that responded quickly to high temperature stress may play key roles in response to organismal stress provoked by high temperature stress. Conclusions: Wnt genes are well conserved in Argopecten scallops, as in other bivalves. Wnt genes may play important roles in adaptation of Bohai Red scallops to changing temperatures. The results in this study will provide new insights into the evolution and function of Wnt genes in bivalves and eventually benefit culture of Bohai Red scallops.


Sign in / Sign up

Export Citation Format

Share Document