The structure of the intestinal microbiota and the frequency of detection of patho-genicity genes (stx1, stx2, bfp) in escherichia coli with nor-mal enzymatic activity isolated from children during the first year of life

Author(s):  
E. I. Ivanova ◽  
L. V. Rychkova ◽  
U. M. Nemchenko ◽  
E. V. Bukharova ◽  
M. V. Savel'kaeva ◽  
...  
PEDIATRICS ◽  
1955 ◽  
Vol 16 (2) ◽  
pp. 215-227
Author(s):  
Merlin L. Cooper ◽  
Edward W. Walters ◽  
Helen M. Keller ◽  
James M. Sutherland ◽  
Hollis J. Wiseman

During an outbreak of epidemic diarrhea a new serotype of Escherichia coli: E. coli 0127:B8, was isolated from 44 of 145 infants and from 1 nurse among 82 adult personnel in attendance. Among the 44 infants whose rectal swab cultures were positive, 20 were in the first month of life, 16 were 2 to 6 months of age, and 6 were 7 to 12 months of age, a total of 42 being in the first year of life. Severe epidemic diarrhea associated with the presence of E. coli 0127:B8 was characterized by the sudden development of extreme abdominal distention among some of the infants; explosive onset of diarrhea and the presence of a pungent, musty, objectionable odor not noticed around other patients with diarrhea. E. coli 0127: B8 was isolated more frequently while the patients were having diarrhea. Neomycin® was used orally for the specific treatment of patients with diarrhea. The early dosage was small due to our caution in using a new antibiotic. Over the 4 months period of this study the dosage was gradually increased. The average dose was 40 mg./kg./day for the patients with positive cultures and 46 mg./kg./day for those with negative cultures. Of 22 patients with positive cultures, 12 who were treated with Neomycin® alone or in addition to other antibiotics continued to show the presence of E. coli 0127:B8 after Neomycin® therapy had been terminated; however, only 2 of these patients had recurrence of diarrhea, both having had negative cultures while receiving Neomycin®. The administration of Neomycin® to every infant on the 2 wards, regardless of clinical condition, was followed by a decreasing incidence of diarrhea and decreasing detection of E. coli 0127:B8. The dose of Neomycin® was 40 to 50 mg./kg./day. It is our feeling that Neomycin® administered orally was of definite clinical value therapeutically and prophylactically but in the dosage used was inadequate bacteriologically. Four deaths occurred among the 44 infants whose rectal swab cultures were positive for E. coli 0127:B8 and necropsy studies were made on each. A hemorrhagic enteritis was present in 3 infants and in the fourth infant the cause of death was a congenital heart condition. Death of 1 patient with negative rectal swab cultures may very likely be attributed to severe diarrhea. Sera from patients and personnel failed to show the presence of agglutinins for E. coli 0127:B8. in vitro sensitivity tests showed that the order of decreasing bactericidal effectiveness of 5 antibiotics for E. coli 027:B8 was polymyxin, Neomycin®, chloramphenicol, Achromycin®, and Terramycin®. All strains were resistant to dihydrostreptomycin and sodium sulfadiazine. Only the last strains isolated from 2 patients showed increased resistance to Neomycin®, four-and sixteenfold when compared with the first strains isolated from the same patients.


2020 ◽  
Vol 4 (s1) ◽  
pp. 146-147
Author(s):  
Alain Jesus Benitez ◽  
Jeffrey S. Gerber ◽  
Ceylan Tanes ◽  
Kyle Bittinger ◽  
Elliot S. Friedman ◽  
...  

OBJECTIVES/GOALS: The current proposal seeks to investigate the effect of early life antibiotic use in the development of functional gastrointestinal (GI) disorders. We propose that infants exposed to antibiotics will present with gut microbial dysbiosis, changes in fecal bile acid concentrations and develop more GI symptoms compared to unexposed children. METHODS/STUDY POPULATION: We analyzed fecal samples from 174 subjects at 12 months of age, of whom 52 were exposed to antibiotics in their first year of life. Of these, 33 subjects were sampled again at 24 months of age. DNA from 200mg of frozen stool (−80C) was isolated with the Qiagen DNeasy PowerSoil kit. Shotgun libraries were generated using the NexteraXT kit and sequenced on the Illumina HiSeq 2500 using 2x125 bp chemistry. Sequence data were analyzed using the Sunbeam metagenomics pipeline. The abundance of bacteria was estimated using Kraken version 2.0.8. Fecal bile acids will be quantified by liquid chromatography–mass spectrometry (LC-MS). RESULTS/ANTICIPATED RESULTS: Overall bacterial community composition at 12 or 24 months was not associated with antibiotic exposure (PERMANOVA test, Bray-Curtis distance). An increase in Enterobacteriaceae, in particular Escherichia coli, is a signature of antibiotic-induced dysbiosis, but also of early infant gut. Children with antibiotic exposure had slightly higher abundance of Escherichia coli compared to those with no exposure (p = 0.03). At 24 months, the abundance of Bacteroides caccae, a commensal gut species, was decreased for children exposed to antibiotics in the first year of life (fdr = 0.02). We will perform further analysis of bile acid modifying bacteria, fecal bile acid concentrations and correlate to GI symptoms. DISCUSSION/SIGNIFICANCE OF IMPACT: Our findings suggest a significant but nuanced impact of early life antibiotic use on the composition of the gut microbiota. The association of antibiotic exposure with B. caccae and E. coli warrant further attention in the context of the rapidly developing early-life microbiome. CONFLICT OF INTEREST DESCRIPTION: The authors declare no conflicts of interest relevant to this work.


2019 ◽  
Vol 12 (2) ◽  
pp. 343-350 ◽  
Author(s):  
Lenka Micenková ◽  
Juraj Bosák ◽  
Stanislav Smatana ◽  
Adam Novotný ◽  
Eva Budinská ◽  
...  

1988 ◽  
Vol 101 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Alejandro Cravioto ◽  
Rosa E. Reyes ◽  
Roberto Ortega ◽  
Guadalupe Fernández ◽  
Raymundo Hernández ◽  
...  

SUMMARYColonization of the intestine by putative pathogens was followed longitudinally in a cohort of 56 infants born during one calendar year in a rural Mexican village with faecal cultures taken every fortnight and every time a child had diarrhoea. The frequency of isolation of pathogens during episodes of diarrhoea was compared with that of matched controls from the same cohort. Incidence of diarrhoea during the first year of life was 98%, diminishing to 93% during the second year. The incidence curves for each year were not significantly different (P> 0·1). Isolation of enteropathogenicEscherichia coli, enterotoxigenicEscherichia coliproducing heat-stable (ST) and/or heat-labile (LT) enterotoxins and rotaviruses was significantly higher in infants with diarrhoea during the first 2 years of life. In the case of shigella, although no significant differences were found by semester of life, 13 of 16 children in which these strains were found had diarrhoea. Isolation ofSalmonellaspp.,Campylobacterspp. and protozoa were not significantly different in the two groups during the period studied. Strains showing localized adherence to HEp-2 cells or the presence of colonization factor antigens I or E8775 were found with significantly higher frequency in children with diarrhoea. Eighty-two percent of ST+or LT+ETEC strains isolated produced one of the three known colonization factors.


2006 ◽  
Vol 50 (1) ◽  
pp. 156-161 ◽  
Author(s):  
Nahid Karami ◽  
Forough Nowrouzian ◽  
Ingegerd Adlerberth ◽  
Agnes E. Wold

ABSTRACT The ecological impact of antibiotic resistance in the absence of selective pressure has been poorly studied. We assessed the carriage of tetracycline resistance genes, persistence in the microbiota, fecal population counts and virulence factor genes in 309 commensal, intestinal Escherichia coli strains obtained from 128 Swedish infants followed during the first year of life with regular quantitative fecal cultures. No infant was given tetracycline, but 25% received other antibiotics. Tetracycline resistance was identified in 12% of strains, all of which carried either tet(A) (49%) or tet(B) (51%) genes. Resistance to other antibiotics occurred in 50% of tet(A)-positive strains, 42% of tet(B)-positive strains and 13% of tetracycline-sensitive strains. However, colonization with tetracycline-resistant strains was unrelated to treatment with antibiotics. Strains that were tet(B)- or tet(A)-positive carried the genes for P fimbriae and aerobactin, respectively, more often than susceptible strains. Tetracycline-resistant and -susceptible strains were equally likely to persist among the intestinal microbiota for ≥3 weeks and had similar population numbers. However, when a resistant strain and a susceptible strain colonized a child simultaneously, the resistant variety showed lower counts (P = 0.03). In cases of long-term colonization by initially tetracycline-resistant E. coli strains, loss of tet genes occurred in 3 of 13 cases with variable effects on population counts. The results indicate that there is limited pressure against the carriage of tet genes in the infantile gut microbiota even in the absence of antibiotics. Resistant strains may possess colonization factors that balance the cost of producing resistance elements.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148518 ◽  
Author(s):  
Raies A. Mir ◽  
Thomas A. Weppelmann ◽  
Mauricio Elzo ◽  
Soohyoun Ahn ◽  
J. Danny Driver ◽  
...  

2001 ◽  
Vol 33 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Paulo Pimenta Figueiredo ◽  
Enio Cardillo Vieira ◽  
Jacques Robert Nicoli ◽  
Regina Drummond Nardi ◽  
Pierre Raibaud ◽  
...  

2016 ◽  
Vol 311 (1) ◽  
pp. G123-G129 ◽  
Author(s):  
Thomas Secher ◽  
Camille Brehin ◽  
Eric Oswald

The intestinal microbiota exerts vital biological processes throughout the human lifetime, and imbalances in its composition have been implicated in both health and disease status. Upon birth, the neonatal gut moves from a barely sterile to a massively colonized environment. The development of the intestinal microbiota during the first year of life is characterized by rapid and important changes in microbial composition, diversity, and magnitude. The pioneer bacteria colonizing the postnatal intestinal tract profoundly contribute to the establishment of the host-microbe symbiosis, which is essential for health throughout life. Escherichia coli is one of the first colonizers of the gut after birth. E. coli is a versatile population including harmless commensal, probiotic strains as well as frequently deadly pathogens. The prevalence of the specific phylogenetic B2 group, which encompasses both commensal and extra- or intraintestinal pathogenic E. coli strains, is increasing among E. coli strains colonizing infants quickly after birth. Fifty percent of the B2 group strains carry in their genome the pks gene cluster encoding the synthesis of a nonribosomal peptide-polyketide hybrid genotoxin named colibactin. In this review, we summarize both clinical and experimental evidence associating the recently emerging neonatal B2 E. coli population with several pathology and discuss how the expression of colibactin by both normal inhabitants of intestinal microflora and virulent strains may darken the borderline between commensalism and pathogenicity.


2020 ◽  
Vol 22 ◽  
pp. 02024
Author(s):  
Galina Fedotova ◽  
Irina Vakhlova ◽  
Lyubov Boronina

The article presents data on the study of the metabolic activity of the intestinal microbiota in children of the first year of life. The study was performed by gas-liquid chromatographic analysis with the determination of short-chain fatty acids (SCFA) in fecal matter, which reflects the microbiota metabolic activity. The content of fecal matter was determined, reflecting the activity of aerobic microbiota-acetic acid (C2); anaerobic microbiota – propionic (C3), butyric (C4) acids; the sum of acids (E); anaerobic index (AI), which is an integral indicator of the intestinal environment. It was found that despite surgical intervention in the intestine in the first months of life, the metabolic activity of microbiota in children with intestinal resection remains stable throughout the first year of life.


Sign in / Sign up

Export Citation Format

Share Document