The Use of Model Intercomparison Projects in Engaging Undergraduates in Climate Change Research

2021 ◽  
Vol 5 (1) ◽  
pp. 27-28
Author(s):  
Robert Nazarian ◽  

To improve model performance and study climate change impacts across physical, biological, and social systems, model intercomparison projects (MIPs) are regularly conducted. MIPs represent a crucial tool for undergraduate researchers to meaningfully contribute to climate change research.

2021 ◽  
Vol 11 (15) ◽  
pp. 6918
Author(s):  
Chidubem Iddianozie ◽  
Gavin McArdle

The effectiveness of a machine learning model is impacted by the data representation used. Consequently, it is crucial to investigate robust representations for efficient machine learning methods. In this paper, we explore the link between data representations and model performance for inference tasks on spatial networks. We argue that representations which explicitly encode the relations between spatial entities would improve model performance. Specifically, we consider homogeneous and heterogeneous representations of spatial networks. We recognise that the expressive nature of the heterogeneous representation may benefit spatial networks and could improve model performance on certain tasks. Thus, we carry out an empirical study using Graph Neural Network models for two inference tasks on spatial networks. Our results demonstrate that heterogeneous representations improves model performance for down-stream inference tasks on spatial networks.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Elizabeth J. Thompson ◽  
Huali Wu ◽  
Chiara Melloni ◽  
Stephen Balevic ◽  
Janice E. Sullivan ◽  
...  

ABSTRACT Doxycycline is a tetracycline-class antimicrobial labeled by the U.S. Food and Drug Administration for children >8 years of age for many common childhood infections. Doxycycline is not labeled for children ≤8 years of age, due to the association between tetracycline-class antibiotics and tooth staining, although doxycycline may be used off-label under severe conditions. Accordingly, there is a paucity of pharmacokinetic (PK) data to guide dosing in children 8 years and younger. We leveraged opportunistically collected plasma samples after intravenous (i.v.) and oral doxycycline doses received per standard of care to characterize the PK of doxycycline in children of different ages and evaluated the effect of obesity and fasting status on PK parameters. We developed a population PK model of doxycycline using data collected from 47 patients 0 to 18 years of age, including 14 participants ≤8 years. We developed a 1-compartment PK model and found doxycycline clearance to be 3.32 liters/h/70 kg of body weight and volume to be 96.8 liters/70 kg for all patients, comparable to values reported in adults. We estimated a bioavailability of 89.6%, also consistent with adult data. Allometrically scaled clearance and volume of distribution did not differ between children 2 to ≤8 years of age and children >8 to ≤18 years of age, suggesting that younger children may be given the same per-kilogram dosing. Obesity status and fasting status were not selected for inclusion in the final model. Additional doxycycline PK samples collected in future studies may be used to improve model performance and maximize its clinical value.


Author(s):  
Sharon Friel

This chapter explains the role of human activities in driving climate change, and some of its most significant impacts. It discusses justice issues raised by climate change, including causal responsibility, future development rights, the distribution of climate change harms, and intergenerational inequity. The chapter also provides a status update on current health inequities, noting the now recognized role of political, economic, commercial, and social factors in determining health. This section also discusses environmental epidemiology and the shift to eco-social approaches and eco-epidemiology, noting that while eco-epidemiologists have begun to research the influence of climate change on health, this research has not yet considered in depth the influence of social systems. The chapter concludes with an overview of how climate change exacerbates existing health inequities, focusing on the health implications of significant climate change impacts, including extreme weather events, rising sea levels, heat stress, vector-borne diseases, and food insecurity.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanhe Tian ◽  
Wang Shen ◽  
Yan Song ◽  
Fei Xia ◽  
Min He ◽  
...  

Abstract Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.


2021 ◽  
Vol 268 ◽  
pp. 115951
Author(s):  
Xiangyu Xu ◽  
Ning Qin ◽  
Zhenchun Yang ◽  
Yunwei Liu ◽  
Suzhen Cao ◽  
...  

2020 ◽  
Vol 163 (3) ◽  
pp. 1329-1351 ◽  
Author(s):  
Anne Gädeke ◽  
Valentina Krysanova ◽  
Aashutosh Aryal ◽  
Jinfeng Chang ◽  
Manolis Grillakis ◽  
...  

AbstractGlobal Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Timothy A Ebert ◽  
Michael E Rogers

Abstract Candidatus Liberibacter asiaticus Jagoueix, Bové, and Garnier (Rhizobiales: Rhizobiaceae) is transmitted by the psyllid Diaphorina citri Kuwayama and putatively causes Huanglongbing disease in citrus. Huanglongbing has reduced yields by 68% relative to pre-disease yields in Florida. Disease management is partly through vector control. Understanding vector biology is essential in this endeavor. Our goal was to document differences in probing behavior linked to sex. Based on both a literature review and our results, we conclude that there is either no effect of sex or that identifying such an effect requires a sample size at least four times larger than standard methodologies. Including both color and sex in statistical models did not improve model performance. Both sex and color are correlated with body size, and body size has not been considered in previous studies on sex in D. citri in terms of probing behavior. An effect of body size was found wherein larger psyllids took longer to reach ingestion behaviors and larger individuals spent more time-ingesting phloem, but these relationships explained little of the variability in these data. We suggest that the effects of sex can be ignored when running EPG experiments on healthy psyllids.


2015 ◽  
Vol 8 (9) ◽  
pp. 2841-2856 ◽  
Author(s):  
S. Miyazaki ◽  
K. Saito ◽  
J. Mori ◽  
T. Yamazaki ◽  
T. Ise ◽  
...  

Abstract. As part of the terrestrial branch of the Japan-funded Arctic Climate Change Research Project (GRENE-TEA), which aims to clarify the role and function of the terrestrial Arctic in the climate system and assess the influence of its changes on a global scale, this model intercomparison project (GTMIP) is designed to (1) enhance communication and understanding between the modelling and field scientists and (2) assess the uncertainty and variations stemming from variability in model implementation/design and in model outputs using climatic and historical conditions in the Arctic terrestrial regions. This paper provides an overview of all GTMIP activity, and the experiment protocol of Stage 1, which is site simulations driven by statistically fitted data created using the GRENE-TEA site observations for the last 3 decades. The target metrics for the model evaluation cover key processes in both physics and biogeochemistry, including energy budgets, snow, permafrost, phenology, and carbon budgets. Exemplary results for distributions of four metrics (annual mean latent heat flux, annual maximum snow depth, gross primary production, and net ecosystem production) and for seasonal transitions are provided to give an outlook of the planned analysis that will delineate the inter-dependence among the key processes and provide clues for improving model performance.


2020 ◽  
Vol 163 (3) ◽  
pp. 1267-1285 ◽  
Author(s):  
Jens Kiesel ◽  
Philipp Stanzel ◽  
Harald Kling ◽  
Nicola Fohrer ◽  
Sonja C. Jähnig ◽  
...  

AbstractThe assessment of climate change and its impact relies on the ensemble of models available and/or sub-selected. However, an assessment of the validity of simulated climate change impacts is not straightforward because historical data is commonly used for bias-adjustment, to select ensemble members or to define a baseline against which impacts are compared—and, naturally, there are no observations to evaluate future projections. We hypothesize that historical streamflow observations contain valuable information to investigate practices for the selection of model ensembles. The Danube River at Vienna is used as a case study, with EURO-CORDEX climate simulations driving the COSERO hydrological model. For each selection method, we compare observed to simulated streamflow shift from the reference period (1960–1989) to the evaluation period (1990–2014). Comparison against no selection shows that an informed selection of ensemble members improves the quantification of climate change impacts. However, the selection method matters, with model selection based on hindcasted climate or streamflow alone is misleading, while methods that maintain the diversity and information content of the full ensemble are favorable. Prior to carrying out climate impact assessments, we propose splitting the long-term historical data and using it to test climate model performance, sub-selection methods, and their agreement in reproducing the indicator of interest, which further provide the expectable benchmark of near- and far-future impact assessments. This test is well-suited to be applied in multi-basin experiments to obtain better understanding of uncertainty propagation and more universal recommendations regarding uncertainty reduction in hydrological impact studies.


Sign in / Sign up

Export Citation Format

Share Document